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I. INTRODUCTION 

Firing of substances is one of the basic methods of preparing materials 
having defined properties (see Table 1). It follows that a programmed 
change of temperature is applied not only in nature but also in many 
modern techniques, furnishing the basis of almost all technically important 
materials from single crystals up to glasses. In order to define such materials 
we need to know (besides their structure) their thermodynamic behaviour, 
i.e. stability of each state, phase relations and characteristic temperatures of 
phase transformations. All this can be found in ordinary thermodynamics 
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TABLE 1 

The rate of temperature changes as a decisive parameter for material formation in different 
states of stability 

Cooling Type of process 
rate 

Type of material Method of formation 

<lO-r” Infinitely slow Minerals, Geological processes 
crystallization single crystals 

1O-7 Controlled Natural and synthetic Crystal growth from solutions, 
1o-4 > crystallization single crystals gels and coarsening of solids 
10-l Thermophysical 

measurements 
102 Ordinary cooling Oxides, silicates Casting, immersion 

and chalcogenides 
105 
10* > 

Freeze-in by Metals and other Melt splatting 
ultrafast cooling materials or spinning techniques 

10” Disordering on surfaces Layers on metallic Vapor deposition 
and other materials or laser glasing 

(dealt with in a large number of textbooks); as a matter of fact it is a 
“ thermostatic” description employing a conventional form of equilibrium 
phase diagrams. Tabulated phase diagrams have become important assis- 
tants in the preparation of ceramic materials [l], particularly oxide systems, 
and have been regularly published since 1964 by the American Ceramic 
Society. It is worth noting that reference data gradually has revealed a series 
of changes reflecting the amount of heating required to achieve equilibrium, 
e.g. in the SiO,-Al,O, system, the process of melting changes from eutectic 
to peritectic in character, whilst lengthening the equilibration time from 
hours to weeks [l]. From Table 1 it is evident that conditions which are 
extremely close to actual equilibrium are only possible to reach with very 
slow cooling and/or heating, such as is regularly achievable only during 
geological processes. Actually-available rates of thermophysical measure- 
ments [2,3] fall, however, in the boundary area of so-called thermodynami- 
cally extreme conditions of rapid heating and/or cooling. Introduction of 
real conditions to the existing thermophysical description is herewith the 
subject of our review. 

In the classical thermodynamic description of a system in chemical 
equilibrium, the given phase areas in a phase diagram represent zones of 
minima of the Gibbs energy G, and the phase coexistence is given by the 
Gibbs phase rule. To construct a phase diagram requires mapping all 
available phases and locating their phase boundaries. This is, unfortunately, 
not possible simply by direct measurements of temperature and/or con- 
centration dependences of AG. If the measurement of electromotive force E 
is possible, AG for the reaction is available by means of the direct propor- 
tionality AG = rnsE (where m and % are the charge and the Faraday 



351 

constant respectively). This method is of course only useful in the case of a 
suitable reversible cell, e.g. in alkali metal chloride systems [4], where it 
serves to give straightforward estimates of the stability and the metastability 
of a given substance by indicating positive and negative changes in AG 
respectively. Another method of estimating AG is by means of enthalpy 
changes AH, using the Gibbs-Helmholtz equation AG = AH - TAS. This 
falls within the broad scope of calorimetry and thus the calorimeter is 
extremely important to the versatile thermochemist (see refs. 5 and 6 
(monographs) and refs. 7-10 (review articles), and also refs. 11-14 which 
include applications to the thermochemistry of alloys). 

The classification of calorimeters is usually based on three main variables. 
These are heat produced or absorbed Q, temperature of the sample K (i.e. 
that of the entire calorimeter) and temperature of the surroundings q (i.e. 
that of the calorimeter jacket) [2,9,10]. We can distinguish the following 
types of calorimeter: isothermal (T, = q = constant), including the solution 
ice or Bunsen calorimeters; adiabatic (T, = q # constant), suitable for mea- 
suring heats of reaction and heat capacities of relatively slow processes 
including dissolution; heat flow calorimeter, isodiathermal (T, - Tj = 
constant), useful for the direct determination of heat capacities and heats of 
transformation; or isoperibolic (T, - q --) 0, Tj = constant and T, being 
measured). It follows that the quantities to be determined in almost all 
calorimetric experiments are changes in temperature, based on a knowledge 
of exactly what amount of substance is taking part in the reaction (assuming 
a particular reaction to occur). Only compensation calorimetry uses temper- 
ature differences exclusively for regulation, in order to maintain the samples 
in the preselected temperature programme (e.g. DSC). 

The practical determination of reaction heats, heat capacities and all 
other thermal data begins with the selection of a suitable method. The most 
accurate way of determining heats is direct measurement of the heat effect 
of the actual reaction taking place in a calorimeter. The combustion bomb 
remains the standard apparatus for determining heats of formation of, for 
example, oxides. However, it requires skillful handling and careful analysis. 
Direct calorimetric determination of effects associated with mixing of liquids, 
particularly molten alloys, using conventional Calvet heat-flow or adiabatic 
calorimeters, has become a tradition. Solution calorimetry requires more 
time than direct calorimetry but has wider applicability. Thus, it is used for 
investigating heat effects associated with the ‘freezing’ of nonequilibrium 
structures and of other delayed transformations and is suitable, for example, 
for alloys as it allows treatment of alloys before dissolution. Since such heat 
effects are generally small their measurement requires the greatest accuracy 
and selection of a method which decreases errors. An example is where a 
solvent is selected in which the component studied has a low heat of 
solution; water, acids, liquid metals and/or oxide fluxes are among those in 
common use. Heat capacities can be derived from heat-content measure- 
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ments obtained by the popular drop-in isoperibolic calorimetry. Here it is 
necessary to prevent processes other than those to be measured, such as 
oxidation, decomposition or order-disorder transformations (including glass 
formation). In metallurgy, a popular method is the direct measurement of 
heating and/or cooling curves and also, occasionally, the measurement of 
heat fluxes from or into the sample [15]. (The corresponding differential 
method, called DTA [2], is the most frequent one in the thermochemical 
laboratory and will be dealt with in a separate paragraph.) 

All the above-mentioned methods, however, have instrumental drawbacks 
and can only be used for the determination of phase diagrams together with 
direct observations of the structural state of the sample (by, for example, 
X-ray diffraction analysis, microscopy, etc.). This is, of course, the normal 
procedure for determining a phase diagram without analyzing it in more 
detail. Some specialized measurements, however, are worth mentioning. 
EMF measurements can be subdivided into three categories [13]: using 
galvanic cells with liquid electrolytes [16], with solid electrolytes [5] and with 
point electrodes [17]. The last, not so well known, has the advantage of quick 
investigation, as shown, for example, for AG measurements of Cu-Ca alloys 
[17]. Here CaF, pellets are employed as a solid electrolyte in planar contact 
with a layer of Ni/NiO electrode and having on its other side a two-point 
contact from Fe and Cu. The Fe point, on additional application of electric 
current, provides polarization of CaF, so that the metallic Ca is precipitated 
at higher temperatures. This can react with the Cu point, forming in this way 
alloys which are ready for direct measurement of AG. Another well-known 
technique is the determination of partial vapor pressures of a component 
above a solid sample, using fairly sensitive measurements (e.g. using TG) of 
larger amounts of the sample heated near the boiling points at preregulated 
pressures [la]. The effusion-Knudsen method [5] requires two separate 
measurements, the partial vapor pressure of a selected component in the 
alloy and that of the pure component at the same pressure. Very sensitive 
pressure detection is described, for example, in ref. 18. Using mass spec- 
trometry, the ratio of the ion currents IA and I, (proportional to the partial 
vapor pressures pA and pB of components A and B) with the alloy atomic 
fractions xA and xr, makes possible the calculation of the change of excess 
Gibbs energy AG nx during a single measurement [19] 

d AGEX/dx, = ln( I,x,/l,x,)RT + const. (1) 

Another modification of the Knudsen method is the application of radioac- 
tive isotope tracers [20] and/or electron microprobe analysis [21]. In the 
dew-point method the equilibrium concentration can be continuously de- 
termined using, for example, electric conductivity measurements [22]. 

Equilibrium phase diagrams cannot, however, give any information about 
the reaction which transforms one phase to another, nor about the composi- 
tion or structure of phases occurring under conditions other than those 
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which make equilibration possible. Under conditions of equilibrium of 
phases, when the chemical potential of the liquid phase pi (for each 
component i) is equal to that of the solid phase &, the stable coexistence of 
both phases occurs. For a mathematical description, it is important how 
chemical potentials are expressed, i.e. to find a suitable strategy of phase 
diagram calculations. This is reviewed, for example, in refs. 23 to 26 and is 
applied to the computer generation of phase diagrams in refs. 27 and 28. 
The advantages of phase diagram construction using computers is docu- 
mented by numerous specialised articles. Here, only a few dealing with 
heterogeneous equilibria are mentioned, for example describing data on 
liquidus curves in ternary systems [29], phase relations of multi-component 
systems in the subsolidus region [30], binary phase diagrams of compounds 
which do not form solid solutions [31], models of oxide melts [32], algorith- 
mization of classical graphical treatment stressing phase coexistence at the 
invariant points [33], association models and glass formation in alloys [34] 
and prediction of eutectics and phase separation in the glass-forming region 
[35]. Here belongs the problem of how to express the non-ideality of 
solutions, as illustrated in Table 2 [36]. For a real system the system 
temperature deviates from that at equilibrium, and so the equality of 
chemical potentials is violated, producing in this way a driving force for the 
phase transformation. A measure of this force is the chemical potential 
difference A~_L, = ,ui - &, i.e. for all Ap, < 0 the solid phase melts and for all 
Ap, > 0 the liquid phase solidifies [37]. In other words, this means that the 
new phase can be formed only under the nonequilibrium conditions of a 
definite driving force, and that at absolute equilibrium no new phase can 
originate. There thus arises a question of how to interpret experimentally-de- 
termined phase diagrams, which do not fully comply with equilibrium ones, 
their divergence being dependent on the proximity of the actual and the 
thermodynamically required conditions applied. Equilibration can be 
achieved under conditions of extremely slow cooling, (see Table 1) for which 
we must appreciate the change of thermodynamic state with time of such a 
non-isothermal experiment and the associated effect on the kinetics of phase 
transformation. The faster the phase transformation proceeds, the quicker is 
the system response to the introduced deviation from equilibrium, enabling 
a closer approach to conditions of equilibrium. On the other hand, there are 
cases where slowness of phase transformation can considerably affect equi- 
libration. In an undercooled liquid the metastable phases can be frozen and 
if the viscosity increases rapidly with decreasing temperature the vitreous 
state can freeze in, resulting in an unstable solid state called a glass 
[2,36-391. 

From the above analysis it follows that studying the time dependence of 
phase conversion is useful for a better understanding of transformation 
kinetics. At the same time the actual phase boundary between the two states 
investigated may be located [2,40-421. It also makes possible determination 
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TABLE 2 

Solid-liquid equilibria for a binary system of components A + B 

AG_ = A= +AGz= 
= AH”’ - TAS’~ + AHEX -TASnx 

=RT(X, In XA+Xr, In X,) =0 
Type of 
mixture ideal (A HID = 0) #O 

real 

regular (AHax > TAS”) y’ 

Representing the decisive effect 
of interactions between spherical- 
like species A and B; valid for 
“ molecular” mixtures of, for example, 
metals 
AHax = fiX,X, 

L athermal (AH” c TASax) 
Asserting the compatible effect 
of a decisive role of mutual arrange- 
ment of geometrically complicated 
species A and B in mixtures of 
polymers, silicates, etc. 
TASEx = [X, ln(X, + aaX,) 

+ Xa ln(Xa + @&>1 

Subdivision: for 0 = * 

X-dependent Subregular CZ(1 + Wax,) 
Pseudoregular O/(1 + QaXa) 

T-dependent Quasiregular a(1 - s1,T) 
X- and T- Quasisubregular 9(1- O,T)(l+ f&,X& 

dependent Quasipseudoregular 

_I 

3 AS= + 0 ( = X,x,/D,) 

W - WV(l+ %Xa) 

$ 
ionic (Tyomkin) 
Regular-like solutions, including 
the effect of A and B spherical 
species occupation in the energetically 
unequal network sites (such as, for example, oxides 
having octahedral and tetrahedral sites i and j) 

ASID = RT cXA,, In Xa,, + CXs,, In Xe8, 
Cl IJ 

ID and EX indicate the ideal and excess values of the Gibbs energy G, the enthalpy H and 
the entropy S; Cl is the interaction parameter. 

of the so-called T-T-T diagram (time-temperature-transformation). The 
T-T-T point is a certain time at which the degree of conversion comes into 
a definite value at a given temperature [2]. The T-T-T diagrams are of use 
for delimiting the minimum cooling rate under which a material can be 
vitrified [43,44] and are well known in metallurgy for specifying the forma- 
tion of a given phase [40,42]. Metallurgists also first noticed the conse- 
quences of nonequilibrium solidification, i.e. phenomena called “coring” 
and “ surrounding”, which occur in the vicinity of invariant points. In the 
first case, the melt undergoing solidification cannot follow the solidus 
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equilibrium curve owing to insufficient mass transport to the phase interface 
[2,40]. The result is grains whose centres are closer to equilibrium composi- 
tion than their outer part. In the second case, the originally precipitated 
phase starts to react with remaining melt on reaching the peritectic tempera- 
ture, and forms a new peritectic phase. The atoms of one component must 
diffuse out from the melt to the phase interface. The thicker the layer is, the 
slower the diffusion proceeds, particularly if the atoms of the second 
component must diffuse in the opposite direction. This inevitably leads to 
nonequilibrium conditions of solidification and the creation of a phase 
which is increasingly less at equilibrium. Supplementary elimination of such 
nonequilibrium concentration gradients is usually accomplished by thermal 
treatment, in order to allow atoms to reoccupy their equilibrium positions. 
Similar phenomena are often met when studying single crystals grown from 
foreign melts whose concentration gradient is dependent on the concentra- 
tion change in the matrix melt. Again, this can be removed by a specific 
treatment or by modification of the preparative conditions (e.g. melt circula- 
tion) . 

Some modem technologies (see Table 1) are intentionally based on such 
phenomena in order to create nonequilibrium phases of specific properties. 
Some examples are where new materials having modified physicochemical 
properties are prepared, which exhibit better magnetic, optical or mechani- 
cal properties, superconductivity, corrosion resistivity, catalytic activity, etc. 
[45-481. A specific field covers materials prepared by ultrarapid cooling, 
which introduces some as yet unsolved problems into the fields of the 
chemistry and physics of solids [49,50]. By quenching the melts of alloys a 
great variety of metallic glasses have been obtained [51], the characteristic 
rate of cooling being about lo6 K s-l [52-571. Relatively low melting 
temperatures and good electric conductivity (eddy current heating) without a 
specific need of high purity favor this technology. Typical compositions are 
about 80% metal (transition metal, noble metal or rare earth) and about 20% 
metalloids or other elements from Group IV or V of the Periodic Table. The 
best glass formation takes place in the vicinity of deep eutectic points. 
Another combination of two different metals, such as Cu-Ti, Nb-Ni, etc., 
has also been reported to form a glass near a eutectic point [52,53]. Such 
metallic glasses are very firm and hard but exhibit plastic deformation. Their 
structure is relatively simple compared with the other glasses (oxides). They 
have no grain interfaces and do not have many faults, which are unavoidable 
with ordered structures. In particular, they are very good magnetic materials 
having high permeability, low coercivity and low magnetic losses. Whilst 
studying the rapid solidification of Al-Mn alloys structures having a 5-fold 
rotational symmetry were identified [58-601 and named quasicrystals. Al- 
though the icosahedral structuring of Al atoms around the central Mn 
represents only a 1% change in their network compared with the original 
f.c.c. structure, the structural units having a 5-fold rotational symmetry 
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cannot form ordered crystalline materials displaying translational symmetry. 
Some theoretical studies have revealed that the undercooled melt has an 
icosahedral local structure. Below the equilibrium temperature there exists a 
correlation between the orientation of these icosahedrals which increases 
with decreasing temperature [61,62], possibly stimulating the formation of a 
glassy state. Similar processes proceeding far from equilibrium are detected 
by technologies which modify the surfaces of materials (mainly metals and 
semiconductors) using high-energy beams such as electron guns or, recently, 
lasers (with a density of about 1 J cmd2). This enables us to obtain new 
controlled-surface structures having a very small size and precise localiza- 
tion, which is difficult to obtain by ordinary procedures. For example, it 
makes it possible to implant elements in alloy surfaces in concentrations and 
structures which are impossible to obtain under normal conditions of slow 
cooling, such as those for Si-Ge [63] or for the modification of thin layers of 
Si [64,65]. The rates of such ultrarapid cooling are estimated to be as great as 
10n K s-l, yielding very limited heat transfer. This causes melt solidifica- 
tion into supersaturated solutions, quasicrystalline and/or noncrystalline 
phases because atoms cannot reach the near-equilibrium state with transla- 
tional symmetry. Laser modification of surfaces also affects the distribution 
of defects, vacancies, dislocations, etc. A survey of methods and experimen- 
tal evidence on certain materials is given in ref. 66 and of the use of the 
electron gun in ref. 67. Similar effects are achieved by applying very high 
dynamic pressures (lo6 bar) with resulting cooling rates of lo9 K s-i and 
pressure changes of 1012 bar s-l. These are suitable for the preparation of 
metastable superconductors, magnetics, composites, etc. Besides the highly 
nonequilibrium processes encountered during rapid changes in external 
conditions [49] the metastable states can be obtained even at relatively slow 
cooling rates of lo-lo2 K s-i when studying very viscous materials (such as 
chalcogenides, oxides [70] and, particularly, silicates, e.g. the thoroughly 
investigated glass Li,O-SiO, [68,69]). 

Processes which are normally expected to produce equilibrated materials 
during single crystal growth may also form metastable phases different from 
those shown in the phase diagram. This is caused by the possibility of melt 
undercooling, as, for example, in the Co-Si system [70], where at slow rates 
of growth (at 1200 o C and 12.5 wt.% Si) the equilibrium eutectic Co + Co,Si 
is formed. If nucleation is suppressed the metastable Co + Co,Si can be 
found. Similarly, instead of equilibrium CdSb the metastable Cd,Sb, can be 
grown (which requires cooling rates far below 10 K s-l). Although these 
processes proceed near equilibrium, the properties of single crystals (texture, 
density of dislocations, impurity, lammeling, etc.) are very sensitive to small 
changes in the experimental conditions which determine the reaction (e.g. 
temperature fluctuation, concentration gradients at interfaces, liquid hydro- 
dynamics, stability of external forces, etc.). It becomes important to find a 
correlation between the changes of given material properties as a response to 
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nonstability of experimental conditions of growth and/or to intentionally 
introduced alterations required to reach full experimental control. 

II. FACTORS AFFECTING THE EXPERIMENTALLY RESOLVED SHAPE OF PHASE 
BOUNDARIES AND METHODS OF THEIR DETERMINATION 

II.1. Experimental arrangements and the sample 

While determining phase boundaries one encounters experimental factors 
of three different types [2,71]: (A) Arising from the nature of the material 
under study as associated with physico-chemical processes of sample pre- 
paration from raw materials; (B) affected by the experimental set-up; and 
(C) dependent on the kinetics of phase transformation. Group (A) can be 
further divided according to factors associated with sample processing 
because the given composition can be made using different preparative 
methods: (i) mechanically, i.e. by suitable homogenization of starting com- 
ponents (e.g. milling, grinding, mixing, etc.); (ii) chemically, i.e. by copreci- 
pitation, freeze-drying or sol-gel reactions from a suitable aqueous or 
nonaqueous solution; and (iii) physically, i.e. by melting a mixture of 
starting components followed by solidification and mechanical treatment of 
the resulting solid. 

A required tempered state for a given working temperature can be 
reached either “directly” (i.e. by time-consuming high-temperature firing) or 
“indirectly” on prereacted samples, by the action of increased pressure or of 
a dissolving substance. For slowly reacting systems, for example silicates, the 
attainment of a completely reacted state is difficult within real experimental 
times, and so it becomes more convenient to include the reaction kinetics 
directly in the real phase diagram than to seek increased reactivity (for 
example by firing the sample at higher temperatures than those required 
followed by annealing at a temperature lower than required). Special atten- 
tion is required by such systems which interact with the surrounding 
atmosphere, i.e. which contain a volatilizable component of a certain partial 
pressure, such as oxygen in oxides, sulfur and arsenic in chalcogenides, etc. 
In such cases we perform temperature treatments as follows. 

(a) At constant atmospheric pressure, leaving the sample free in its holder 
either in a static atmosphere inside the furnace or in a dynamic atmosphere 
of flowing air or another inert gas. In both cases hydrodynamic conditions 
play a decisive role in the transfer of volatilized components which are 
mainly localized in a gaseous envelope around the sample. A static atmo- 
sphere often leads to an increase in the local value of the partial pressure at 
the sample surface or between the grains of powder or polycrystalline 
sample. 

(b) At constant partial pressure of the given component (e.g. 0, for 



oxides). This is ensured by means of a static reservoir of sufficient size at a 
given pressure (and often having pressure control), having the disadvantages 
of all static methods, or a stream of gas with a preset value of the partial 
pressure given by a suitable mixture of two mutually reacting gases, e.g. for 
0, by HZ/H,0 or CO/CO, or for S, by H,/H,S, etc.; a dynamic 
atmosphere saturated with the volatilized component at a temperature lower 
than that required for thermal treatment, e.g. for H,O this involves bubbling 
the carrier gas through water or passing it over suitable hydrates, and for 
metallic As it involves connecting the reaction chamber with tempered As, 
etc. 

(c) Isoactive firing of samples at constant volume, where for a given 
temperature the corresponding balance is carried out between the volatilized 
component of the solid and its surroundings. Here belong all experiments 
carried out in ampoules. 

Group (A) also includes factors affecting the selection and control of the 
initial state of the sample [3,71], i.e. chemical and physical properties 
resulting from the material processing, such as composition compactness 
and homogeneity, impurity, sample diffusivity and viscosity and other 
internal dispositions, e.g. ability to form prenucleus sites as a result of 
prolonged tempering or creation of mechanical tensions and/or other inter- 
nal forces. 

Besides the interfering phenomena described above, group (B) includes all 
factors connected with the choice, experimental set-up and control of 
experimental measurements [3,71], i.e. (i) the effect of external forces during 
measurement (such as temperature, pressure, partial pressure, electromag- 
netic, hydrostatic, gravitational and other force fields) and particularly their 
changes (such as heating and cooling rates, change of atmosphere composi- 
tion or convection instability, transformation of hydrodynamic conditions 
and resulting flows (cf. (ii) below), and (ii) the effect of sample geometry and 
of the measurement set-up (which includes factors affecting the generation 
and absorption of heat, the internal and external flow of heat and mass, the 
extent of volatile component generation and recombination and the interac- 
tion of interfaces and surfaces, which are all effective between the sample 
particles and between the sample and its holder and measuring devices. 

Group (C) deals with the entire course of the phase transformation which 
determines the resulting structure and property of newly formed phases. Its 
understanding and detailed theoretical analysis is decisive for the prediction 
of experimental processes and is discussed in sections III-V below. In 
general, we can distinguish two basic stages of the process. These are the 
initial stage of new phase nucleation and the consequent growth at the phase 
interface (controlled either by boundary chemical reaction or by diffusion of 
reacting components to or from the interface). The total reaction outgrowth 
can be reversely affected by the experimental set-up as discussed above. 
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II. 2. Thermometric measurements 

Temperature measurement of the sample is one of the basic aspects of 
phase boundary determination when studying phase diagrams. Sample tem- 
perature is frequently determined using a mean value of the so-called 
centered temperature, which is valid under an assumption that the temper- 
ature measured in one part of the sample is sufficiently representative of 
that of other parts. The temperature depends on the size of the sample and 
any temperature gradients, as well as on good heat conductivity of the 

Fig. 1. Methods of temperature measurement with respect to sensor positioning. A, Direct, 
single (e.g. heating or cooling curve determination): 1, sensor inside the sample; 2, sensor in 
contact with sample surface (in the limit “sample inside the sensor”). B, Direct, twin (e.g. 
DTA): 1, two geometrically similar specimens (samples versus reference); 2, sample versus 
standard conditions; 3, direct single measurement where the reference is simulated by 
computer. C, Multiple, gradient (e.g. Calvet-type microcalorimetry): 1, Several sensors placed 
along the sample in the furnace temperature gradient; 2, thermopile (to ensure heat transfer 
taking place solely by conduction along the multiple thermocouple leads), (a) between the 
sample and the place of standard conditions, (b) between the sample and the reference. D, 
Compensation, nongradient (e.g. DSC): 1, microheater generation of heat to maintain both 
specimens at a preselected temperature (detected using method A). Other selections of 
relations between the compensation and spontaneous heat fluxes to match given calorimetric 
requirements are possible, e.g. measurement of temperature response (through behaviour of 
sample surroundings (similarly to B2 and C2a). 



sample (or at least of the sample holder) to ensure good averaging of 
temperature along the sample surface. The type of temperature measurement 
is determined by the experimental set-up, particularly by the type of 
measuring head, and can be classified as direct, undirect, compensating, etc. 
(as illustrated in Fig. 1). Single or multiple sensors may be used. 

No less important is the positioning of the sample with respect to the 
source or sink of external heat. The sample can be stationary or movable 
along or across the furnace. The furnace can exhibit homogeneous or 
gradient temperature distribution with constant or programmable temper- 
ature (as shown schematically in Fig. 2). The sample itself can be large 
(suitable for determining integral changes of, for example, enthalpy with 
possible elimination of temperature gradients by suitable melt stirring) or 
small (convenient for minimized temperature gradients in solids but with 
increased sensitivity surface phenomena which are usually negligible in large 
samples). 

Factors arising from a real set-up of experiment which are often neglected 
are the following. 

(a) A consequence of unequal heat absorption by the sample, sample 
holder and inside of furnace. Temperature gradients a priori measured in an 
empty furnace do not usually agree with the real gradients exhibited by the 
actual set-up when the sample with its holder is inserted into the furnace. 
For example, the sample holder can behave as a radiation shield (noble 
metals) or the sample can be transparent to infraheating (calomel). These 
considerably alter the original heat balance; in the first case a lower 
temperature and in the second case a higher temperature is measured than 
that corresponding to the actual temperature of the sample. 

(b) A result of horizontal or vertical convection in a liquid sample caused 
by the following [70,72-881. 

(i) Elevation of melt particles owing to a density difference which is a 
result of an inverse temperature gradient (against gravitation) or caused by 
thermally induced diffusion, by the temperature dependence of a chemical 
equilibrium or by concentration or dissolution, etc. This is the case most 
often found in the laboratory. 

(ii) Liquid flow originating from a surface tension gradient along the free 
surface as a result of temperature or concentration inhomogenity (i.e. 
Marangoni flow) and/or different curvature. This effect is weak under 
normal conditions but becomes more important in gravitationless experi- 
ments with a free surface carried out in space or during the melt spinning 
technique for preparing metallic glasses in the form of thin ribbons. 

(iii) Convection caused by the motion of a solidification front as a result 
of a difference in the specific volumes of liquid and solid phases. Such a 
primary flow exists in practically all investigated systems. 

(iv) Flows caused by the effect of external force fields, such as centrifugal, 
electromagnetic, etc., acting on particles of the liquid phase. 
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f sample 

t 

Fig. 2. Methods of sample temperature control using furnace design. A, Fixed temperature 
gradient: 1, multiple stationary samples placed along the furnace temperature gradient; 2, 
single stationary sample placed inside the movable furnace (used experimentally in e.g. zone 
melting); 3, single movable sample placed in the stationary furnace (e.g. Bridgemann method 
of single crystal growth). Controlled temperature gradient. In combination with A2, usually 
applied experimentally by means of computer. B, Programmed control of furnace tempera- 
ture: 1, isothermal conditions; 2, non-isothermal conditions with hyperbolical, reciprocal or 
constant temperature increase (the latter method of constant heating is used in thermal 
analysis experiments); 3, spontaneous (non-regulated) heating, which is often applied in a 
reciprocal set-up where the sample is inserted into a pretempered furnace, e.g. drop calorime- 
try (it can also serve as DTA with exponential heating in the mode of computer-simulated 
reference). 
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It is worth noting that experimental evidence of the gradientless state of a 
large liquid sample is not proof of a gradientless arrangement, because the 
existence of a sample temperature gradient acting against the gravitational 
field results in intensive mixing of the melt in order to reduce the temper- 
ature differences. Occurrence of flows in melts causes the temperature 
fluctuation to increase, and thus also the transport properties of the liquid 
(which directly affect the stability, order and morphology of the phase 
interface [73,80,81,85]). Inclusion of convection into the theory of phase 
transformation is very difficult and has not as yet been satisfactorily 
achieved. Relevant studies [74-77,81-84,87,88] or numerical modelling for 
certain cases of crystal growth technology [78-80,861 give us a qualified 
picture of possible cases of convection, but entire utilization is very hard to 
deal with (usually owing to the limited capacity of computers and comput- 
ing time). From the viewpoint of our more thermodynamically directed 
survey it has only a peripheral importance and so is excluded from further 
consideration. 

II.3. Differential thermal analysis 

DTA has become a very popular method in various fields of science 
because of its apparent simplicity-a series of thermal data may be collected 
in a single run. Not only may the process under study by measured but, at 
the same time, also the temperature deviation from the predetermined, 
usually linearly programmed, temperature increase. DTA simultaneously 
provides qualitative information about the position of the process along the 
temperature axis, quantitative data about the extent of reaction and finally 
kinetic data about the course of the reaction. The main problem of such 
quasistationary measurements is to decipher complex information hidden in 
a single DTA curve. 

The DTA method belongs to indirect dynamic techniques in which a 
change of sample state is indicated as a temperature difference between the 
sample and a similar, inert reference under identical experimental condi- 
tions. Most commercial DTA instruments can be classified as double 
nonstationary calorimeters in which the thermal behaviour of the sample 
and that of the reference is compared. An advantage of this widely used 
method is the relatively easy verification of differences in thermal regimes of 
both specimens, and thus the determination of zero trace during a single 
measurement (commercial programmes ensuring conditions of constant 
heating and/or cooling). The relatively complicated relationship between 
the measured quantity AT and the desired quantity of enthalpy change AH 
has long been the major drawback in the quantitative and kinetic use of 
DTA. In accordance with refs. 89 and 90 and following the balance of 
thermal fluxes between specimens and their surroundings, the generalized 
equation of DTA was established [91-931. Four essential requirements for 
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Fig. 3. Linear plot of amount of heat (in terms of peak areas A) against sample composition 
C experimentally determined using DTA. 

correct DTA measurements follow from the analysis of the DTA equation: 
(i) attainment of a monotonous temperature increase; (ii) appropriate de- 
termination of characteristic points, such as the onset and tip of peaks, by 
extrapolation of base-line and peak branches; (iii) calibration of the temper- 
ature dependence of DTA instrument constants; and (iv) resolution of the 
s-shaped peak background necessary for refined kinetic evaluations. 

It should be re-emphasized that during any DTA measurement the 
heating rate changes owing to the DTA deflection; at the point where 
completely controlled thermal conditions of the sample are achieved the 
entire DTA peak should disappear, thus demonstrating the contradiction 
between a nonstationary DTA measurement and the equilibrium-like condi- 
tions assumed for a phase transformation [94]. 

Nevertheless, a sequential investigation of samples of different composi- 
tions provides a series of traces which are useful for the exploratory 
determination of phase boundaries corresponding to certain peaks. Refine- 
ment of the position of invariant points can be done by plotting the area of 
successive peaks of fusion or solidification versus composition, to be fitted 
from both sides to a straight line. Their intercept [95] corresponds suffi- 
ciently well to eutectic or peritectic points; if calibrated they also reveal the 
enthalpy change associated with the extrapolated maximum peak area (see 
Fig. 3). It should be noted that, in the region between the solid and liquid 
phases, the less the solid phase melted per unit time the steeper the liquid 
phase curve. The DTA peaks of samples whose composition differs little 
from that of the eutectic are thus strongly concave, showing less sensitivity 
than the DTA peaks of compositions which differ greatly. Although the 



Fig. 4. Schematic picture of DTA responses as applied for dete~nation of phase boundaries. 
A, Idealized DTA curves on passage through the phase boundaries (marked by dashed lines) 
obtained on heating a two component system containing solutions and exhibiting eutectic 
and peritectic points; B, as in A but assuming possible interference of changes taking place 
on extrapolated lines of metastable regions (indicated by dot-dash lines). 

co~st~~tion of a phase diagram purely on the basis of DTA curves looks 
simple (Fig. 4), it is rarely a case of very simply or ideally behaving systems. 
On monitoring the reactions of powders, especially in ceramic oxide systems 
1961, a complex pattern is obtained which exhibits a mixture of desired, 
equilibrium-like phenomena together with delayed or side-reactions. How- 
ever, most misleading is the possible interference of metastable phases (see 
Fig. 4b), i.e. side-effects due to detection of extrapolated phase boundaries 
down into the lower-temperature metastable regions 1971. Similarly, it is 
difficult to determine precisely the peritectic regions, where the method of 
supe~ositio~ of eutectic phase diagrams [71,94] seems to be useful (Fig. 5). 

From the viewpoint of classification of phase transformations three basic 
types of DTA peak can be generally found. 

(i) Peaks characterized by a single sharp apex typical of invariant melting 
or first order modification changes. 

(ii) Peaks having rounded apices mostly representing the changes taking 
place in variant regions within a certain temperature interval. Besides the 
characteristic onset, we may also estimate the liquidus from the peak apex. 

(iii) Traces characterized by two successive apices corresponding to pas- 
sage through a two-phase region, i.e. eutectic or peritectic melting gives the 
first sharp peak (the onset representing the beginning of the fusion interval 
and the apex of the rounded second peak being the end point). 

It is interesting that the characteristic profile of a DTA curve can, in fact, 
be derived from a derivative form of the AH versus 7’ plot [2,94], which is 
particularly useful for describing the temperature behaviour of the unstable 
state of glasses [38,39]. Althou~ mostly used for a h~othetical illustration, 
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Fig. 5. (a) Schematic phase diagram of the system PbO (A) and Ga,O, (B), experimentally 
investigated using the indirect dynamic technique of DTA (to observe formation and 
disappearance of phases) and the direct static method of X-ray diffraction (to indicate the 
existence of individual phases). Having no solid solution regions, the stable and metastable 
phase boundaries are shown by solid and dashed lines, respectively, showing hypothetical 
points (HYP) of a eutectic (E) and congruent melting (melt) of the phase PbGa,O, (C). The 
phase diagram is a superposition of the two simple, eutectic-type phase diagrams A-C and 
A-B shown on each side. (b) Dependence of Gibbs molar energy on composition is presented 
using the classical common tangent method to illustrate both cases of stable and metastable 
phases coexistence at eutectic and hypoeutectic temperatures. 

the actual AH vs. T plot can be derived using the lever rule from an 
equilibrium phase diagram (see Fig. 6), which can include the regions of 
metastability and glass formation. A further link can be introduced when 
assuming the third dimension: time (necessary to account for kinetic 
hindrance of processes occurring when crossing phase boundaries). The best 
representation is in the form of previously mentioned T-T-T diagrams 
[2,43,44] and is also included in Fig. 6 [94]. 
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Fig. 6. A method of distinguishing possible processes taking place on heating (e.g. for a glass). 
(a) Binary phase diagram showing stable states (solid lines), metastable states (dashed lines) 
and glassy states (dot-dash lines). The vertical dotted line shows the composition in question. 
(b) Temperature dependence of enthalpy change (AH) derived from the preceding phase 
diagram by means of the lever rule. The possible course (dotted line) of consequent processes 
occurring on normal heating of the glassy state (prepared by melt quenching) goes through 
the metastable Fe,B (T’,?“) and stable Fe,B (T,:‘) states into a liquid. The boundary lines 
express the limiting metastable and stable cases attainable under extreme conditions of 
ultrafast or ultraslow cooling and heating respectively. (c) The temperature derivative of (b) 
resembles the DTA recording. Each peak corresponds to an individual process shown by a 
step in the H vs. T plot. (d) Corresponding hypothetical T-T-T diagram (including time 1 
for the extent of the reaction, 10-3) with the stable and metastable areas again bounded by 
solid and dashed lines. The horizontal lines correspond to the glass transformation (T,), 
crystallization (T,,), peak (Tt) and melting (Tmelt) temperatures, respectively. The arrows 
indicate the limiting rates of cooling (about lo4 K s-l) required not to touch the curve peak, 
if formation of a glass is desired. 

III. NUCLEATION 

Let us now look at the beginning of the phase transition, when the first 
clusters of the solid phase (that are able to grow independently) appear in 
the melt. This process is called nucleation. The nuclei of the new phase can 
be formed only from the supercooled melt, i.e. in a melt which is in a 
metastable state. The metastable state of the supercooled melt can differ 
from that of the melt by composition and structure at temperatures which 
are equal to or higher than the equilibrium temperature of the phase 
transition. Here complexes or clusters of a given symmetry, which can either 
facilitate or hinder the course of solidification are found [98,99]. On the 
other hand, spinodal decomposition of the melt can occur, when the melt 
decomposes to a number of non-mixing components. The influence of the 
composition of the metastable melt has not been included in the theoretical 
description of nucleation at present. 

Essentially, we can distinguish two nucleation mechanisms: homogeneous 
and heterogeneous. 



Homogeneous nucleation is the nucleation of the new phase in the bulk of 
the homogeneous melt, while heterogeneous nucleation is activated by 
impurities, defects and the surface of the melt and is connected with these 
inhomogeneities. Heterogeneous nucleation starts at a lower degree of 
supercooling in comparison with homogeneous nucleation, because the 
energy required for formation of the critical cluster is usually lower in this 
case. Homogeneous nucleation is more intense than heterogeneous nuclea- 
tion at a higher degree of supercooling. 

III. 1. Homogeneous nucleation 

In the initial stage of homogeneous nucleation clusters of several atoms or 
molecules form as a result of a fluctuation in the thermodynamic quantities. 
However, these small clusters are unstable because the influence of the 
surface energy predominates over the bulk energy. If the clusters reach the 
critical size, they are in a metastable equilibrium. The supercritical clusters 
become the nuclei of the crystal phase, and their further growth is advanta- 
geous from a thermodynamic point of view. 

The nucleation rate I(t) is the basic characteristic quantity in nucleation 
theory, which describes the number of supercritical clusters forming in unit 
volume per unit time. In fact, this quantity describes the kinetics of the 
initial formation of the new phase. 

The nucleation rate will be constant at a constant temperature after a 
certain time. This value corresponds to the stationary nucleation rate Is. The 
delay time (or the transient period, the induction time) is approximately the 
time required to reach the stationary nucleation rate, and it corresponds 
approximately to the moment when the first cluster appears. The delay time 
is extremely short and hardly detectable for phase transition from the vapor 
to the liquid phase. In condensed systems (glasses) the delay time is rather 
longer at 102-lo3 s [99-1021. In these systems it is important to include the 
delay time in order to correctly interpret the data for the phase transforma- 
tion kinetics. The delay time must be relatively long in comparison with the 
cooling rate, in order to avoid experimentally detectable crystallization (e.g. 
for glasses) [103,104]. 

Fluctuation in formation of the clusters is connected with the work 
needed for their formation, and in the case of one component systems this is 
given for the liquid-solid phase transition by 

AG,(T) = -n AFL(T) +A,&-) (2) 
where Ap is the supersaturation (i.e. the difference in the chemical potentials 
of the crystal and liquid phase at a given temperature), A, is the surface of 
the n-sized cluster (that is, a cluster of n molecules or atoms) and 0 
designates the specific surface energy. In the case of binary systems it is 
necessary to consider the dependence on the concentration [105-1081. 
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where n* designates the number of atoms (or molecules) in the critical 
nucleus and y is the geometric factor depending on the cluster form. 

(4 

It is apparent that the work needed for the formation of the critical cluster is 
sensitive to the value of the surface energy cr and to the supersaturation Ap. 
It is thus necessary to obtain exact values of these quantities in the analysis 
of nucleation. For example, the dependencies of u on T or on the cluster 
size, etc. are considered [109,110]. 

Lothe and Pound [112] showed that the motion of the clusters must be 
computed for the nucleation in the vapor, which gives a further contribution 
to AG,. This contribution is negligible in the condensed systems [104]. If we 
know the quantity AG,( T), we can write a relation for the probability P,, of 
the occurrence of a cluster of a given size at temperature T 

P,-exp( - “:;“) (5) 

where k, is the Boltzmann constant (P,, again strongly depends on (I and 

A/J). 
It is assumed in the classical nucleation theories [112-1151 that the 

dominant mechanism of the cluster growth is the gain or loss of single 
molecules on the cluster surface. Let F,(t) be the distribution function of 
the n-sized clusters at time t (i.e. the number of clusters of n atoms in unit 
volume). The evolution equation for the function F,(t) is given by [116] 

dF (t> 
n = c,_lFn_l(t) + e 

dt n+~Fn+l(t) - [cn + 4 40) = J&t> - J,(t> 
(6) 

where the rate constants c, and e, are usually defined as the mean number 
of molecules passing per unit time from parent to newly forming phase and 
vice versa respectively at the surface of the n-sized cluster. The current 

J, = cnK - en+l4+l gives the cluster formation rate for n-sized clusters. 
Equation 6 holds even for non-isothermal nucleation [117], but in this case 
the rate constants c, and e, are time dependent. If we interpret c,(t) as the 
probability of association of one atom on the n-sized cluster surface per unit 
time and e,(t) as the probability of the inverse process, we get a stochastic 
model of the nucleation. Equation 6 is the Fokker-Planck equation 
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[118-1201. The values of the rate constants in condensed systems were first 
published in ref. 121. The following relations were derived in ref. 122 

Ag, = AG,,,l - AG, (9) 

where ps is the surface density of atoms, h is the Planck constant and EA is 
the activation energy for diffusion across the phase interface, which has a 
strong influence on the time evolution of the nucleation. It follows from the 
given relations that c, and e, again strongly depend on (I and Ap. 

Let us look at the solution of eqn. 6. In the case of the stationary state, 
the currents J,,(t) = K are independent of time and of the cluster size n, and 
the constant K is equal to the stationary nucleation rate Is [37] 

Is = zc,.F,o* 00) 

where n* denotes the critical cluster size and Fno denotes the equilibrium 
cluster distribution function 

01) 

N is the number of single atoms in the system and z is so-called Zeldovich 
factor, given by 

In the non-stationary regime at constant temperature, i.e. when the delay 
time is included, the nucleation rate depends on time. For this case, a set of 
approximate analytical solutions exist [123-1281, which could be obtained 
from eqn. (6) or from the known Zeldovich-Frenkel equation [114,115], 
which is the limiting case of eqn. (6) for n B 1. Ref. 129 presents perhaps 
the sole exact calculation of the nucleation within the framework of renor- 
malization group theory. On the other hand, solution of the non-stationary 
nucleation is possible by means of numerical computation. In ref. 130 there 
is a survey article about numerical computation of the nucleation within the 
framework of the Ising model [122,131-1351. It was shown on the basis of 
the numerical computations [134,136] that the best analytical treatment for 
non-stationary nucleation at constant temperature is given by Kashchiev 

[1371 

I(t) =I,[1 +2$i(-1)’ exp( -?)I (13) 
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Fig. 7. Logarithm of the cluster distribution function as a function of time for cluster sizes of 
25, 60, 100 and 180 molecules at T = 822 K in the case of nucleation from the Li,O * 2Si02 
melt. 
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n 
(14) 

In the general case, at non-constant temperature, analytical solution for the 
nucleation rate was not possible; only a quasistationary solution using 
certain restrictive assumptions was found [137]. On the basis of numerical 
computation of the kinetic equation, it is possible to obtain a set of 
quantities which characterizes the homogeneous nucleation process at con- 
stant and non-constant temperature [122,134] (see Figs. 7, 8 and 9). 

Figure 7 shows the dependence of the logarithm of the cluster distribution 
function as a function of time for various cluster sizes in the case of 
nucleation from the Li,O - 2Si0, melt at T = 822 K [122]. It is evident from 
Fig. 7 that the time required to reach a stationary state depends on the 
cluster size. 

Figure 8 shows the time dependence of the logarithm of the currents J,(t) 
at constant temperature. It can be shown from a theoretical analysis of the 
kinetic equation, eqn. (6), that the currents J,(t) have maxima at n -C n* 
[116]. This was confirmed by numerical computation. A stationary state was 
reached after a certain delay, which corresponds to the increasing function 
of the cluster size. 
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Fig. 8. Logarithm of the current J as a function of time for cluster sizes of 25, 60, 100 and 
180 molecules at T = 822 K in the case of nucleation from the Li@.2SiO, melt. 
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Fig. 9. Temperature dependence of the normalized nucleation rate I,,, = AJ8.4 x 10’ [m3 
s-‘J (solid line) and the normalized growth rate RNoR = R/5.8 x low5 [III sW1] (dashed line) 
for the Li,O-2Si0, melt. Tg denotes the glass transition temperature. 



372 

It is evident from the temperature dependence of the stationary nuclea- 
tion rate I, and the growth rate R (see Fig. 9) for the Li,O - 2Si0, model 
melt, that the nucleation rate and the growth rate have extremum values at 
various temperatures. Only in a certain temperature interval do the nuclea- 
tion and the growth of nuclei occur simultaneously, i.e. the volume crystalli- 
zation occurs relatively quickly. Only fast cooling, i.e. relatively rapid 
passage through this temperature interval, enables the preparation of the 
glasses (see the following section concerning T-T-T diagrams). 

In the case of non-constant temperature, it was shown that the current J,, 
depends on the cooling rate (see ref. 134), and the rate of formation of the 
critical nuclei decreases with increasing cooling rate. It was also observed 
that the critical size of the nucleus depends on temperature, and decreases 
with increasing undercooling. The nucleation rate is influenced by cooling or 
heating, when the subcritical nucleus becomes supercritical (and vice versa), 
and this fact is called athermal nucleation. Numerical computation [138] 
(where this phenomenon is automatically included) shows that with oscillat- 
ing temperatures the nucleation rate increases (in comparison with constant 
temperature). This effect was experimentally observed by the authors of ref. 
139. A survey of homogeneous nucleation may be found in ref. 140. 

111.2. T-T-T diagrams 

So-called T-T-T (time-temperature- transformation) diagrams are intro- 
duced for determination of the dependence of time required for formation of 
a given volume fraction crystallized at a particular temperature (see, for 
example, ref. 141). T-T-T diagrams characterize bulk crystallization and 
involve the nucleation process and further growth. 

The volume fraction crystallized X(t) at time t is given by the 
Johnson-Mehl-Avrami-Jerofejev-Kolmogorov equation [35,42,88-101, 
141-1471 

v(t) x(t)= v - = 1 - exp 
0 

-/‘I(t’)u(r- t’) dt’ 
0 1 (15) 

where V, is the volume of the parent phase, V(t) is the volume of the crystal 
phase at time t, I is the nucleation rate and u( t - t’) is the volume of the 
growing crystallization centre at time t which was formed at time t’. It has 
been shown that the additivity concept (based on the assumption that the 
momentary value of the transformation rate ( X = d X/d t) depends only on 
X and T and not on the temperature history of the transformation process) 
is advantageous for solution of the real non-isothermal processes. Sestak 
[145,146] and DeBruijn et al. [147] showed that at constant heating rate 
(f # 0), a mathematical solution of the differential nucleation-growth equa- 
tion gives the same results as in the classical case under isothermal condi- 
tions [2,36,148]. 
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The computation of the volume fraction crystallized X is much easier if it 
is possible to separate the dependence X on the temperature from the 
dependence on X, i.e. to have the basic kinetic equation in the form 
X = k( T)/B( X), where it is possible to derive the functions k(T) and 
B(X) from classical model ideas involving nucleation, crystal growth and 
diffusion. Analysis of the DSC and DTA experiments also depends on the 
form of this function. In the general case under non-isothermal conditions 

11491 

k(T) dt=B(X) dX=db(X) (16) 

and the solution of this equation at F= 0 is b(X) = k(T)t (where b(X) 
denotes the basic function of B(X)). The time t, required for reaching the 
defined transformation degree X, is then given by ta( T) = b( X,)//Q T). 

In the case of the spherical nucleus form and at a constant growth rate R 

u(t) = $7zR3t3 (17) 

In the case of multicomponent systems, the growth rate of the crystallization 
centre is limited by diffusion processes. In such a case R - t112 and u - t312 

[37]. The same dependence of the volume of the growing crystallization 
centre is observed in the case where the growth of the nucleus is limited by 
heat transfer. 

If the nucleation rate is stationary (i.e. if it is possible to neglect the delay 
time) and the growth rate of the crystallization centre is not limited either by 
heat transfer or by diffusion, the following equation holds in the initial stage 
of crystallization (X <<: 1) 

X(t) = SI,R3t4 (18) 

This effect must be included in the computation of the volume fraction 
crystallized in such a case, where it is not possible to neglect the delay time 
for reaching stationary nucleation [HO]. A more exact analysis of the volume 
crystallization is based on computation of the size-dependent cluster distri- 
bution function of the newly forming phase, which characterizes more 
accurately the state of the system [122,151,152]. Some results of the numeri- 
cal computation are illustrated in Fig. 10 (see ref. 122). 

Figure 10a shows the T-T-T diagram for various values of the crystalliza- 
tion fraction X and for various approximations of the supersaturation 
APL(T) as a function of the temperature. Figure 10b shows the T-T-T 
diagram for various values of the surface tension. Figure 10~ shows the 
influence of the phase equilibrium temperature TE on the volume crystalliza- 
tion. Figure 10d shows the influence of latent heat on the T-T-T diagram. 
Figure 10e shows the influence of the wetting angle 9 on heterogeneous 
nucleation. 

Within the framework of phenomenological field theory of the phase 
transformation based on the Landau-Lifschic form of the free energy, the 
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most successful description of the nucleation processes with further growth 
has until now been given in ref. 153. T-T-T diagrams can be used, for 
example, for the study of glass states. If we want to carry out analyses of 
glass state creation, it is necessary to define this glass state. Uhlman [154] 
proposed for the upper limit of the crystallization phase in the glass state the 
value X, = 10e6, which is lower than the experimentally observable value. It 
is possible to estimate from the T-T-T diagram the characteristic minimum 
cooling rate pa, which is sufficient for a melt to transfer to the glass state. 

f,, = ( TE - T&t, (1% 
where (TX, tx) is the point of the T-T-T diagram corresponding to the 
minimum time t, needed for formation of the crystallization fraction X,; 
TE denotes the crystallization equilibrium temperature. 

It is possible to get a more accurate estimation of the critical cooling rate 
from a construction of the continuous cooling curves, i.e. from T-C diagrams 
(cooling). This method was first used in refs. 109 and 155. The curves 
constructed for conditions of continuous cooling show that, in comparison 
with the T-T-T diagram, the same crystallization degree is reached at a 
relatively lower temperature and in longer times. 

111.3. Heterogeneous nucleation 

Heterogeneous nucleation is different from homogeneous nucleation in 
the size of the crystallization center on which the nucleus of the new phase 
can be formed (it is smaller in comparison with homogeneous nucleation) 
and in the work needed for critical nucleus formation (it is usually lower 
than in the case of homogeneous nucleation). The work needed for critical 
heterogeneous nucleus formation AG,* HET for a spherical approximation of 
the surface of a crystal nucleus is given by [37] 

AGsET = AG,,&( 9) (20) 

Fig. 10. Influence of various parameters on T-T-T diagrams for the Li,O.ZSiO, melt. (a) 
T-T-T diagram for various values of the crystallization fraction X and for various ap- 
proximations of the supersaturation Ap. Curves 1 and 2, Ap = (Ahn(Tn - T)/Z’n)(T/Ta), 
u = 0.117 (J m-‘); curves 3 and 4, Ap = (Ahn(Tn - T)/Z’n), u = 0.160 (J m-*). X=10P6 
for curves 1 and 3 and X= 0.1 for curves 2 and 4. (b) T-T-T diagram for various values of 
the surface tension u. Curve 1, a = 0.148; curve 2, u = 0.152; curve 3, u = 0.156; curve 4, 
u = 0.160 (J m-*). (c) T-T-T diagram for various values of the equilibrium temperature TE. 
Curve 1, TE =1400 K; curve 2, TE = 1350 K; curve 3, TE =1300 K; curve 4, TE =1250 K. (d) 
T-T-T diagram for various values of the latent heat Ah,. Curve 1, Ah, = 10-19; curve 2, 
Ah,= 0.95~10-‘~; curve 3, Ah, =0.9~10-‘~; curve 4, Ahn = 0.85 ~10~‘~ (J molecule-‘). 
(e) T-T-T diagram for various wetting angles 9 in the case of heterogeneous nucleation. 
Curve 1, 6=45O; curve 2, 9=70°; curve 3, 9=100°; curve 4, 9=120°; curve 5, 
6=140°. 



376 

where 

*k(6) = $(l - cos 6)2(2 + cos 9) (21) 

9 is the wetting angle between the newly forming crystal phase and the 
surface, where nucleation occurs. The work needed for critical nucleus 
formation decreases with decreasing wetting angle 9, and therefore nuclea- 
tion is easier at these surfaces in comparison with homogeneous nucleation. 
In contrast to homogeneous nucleation heterogeneous nucleation occurs 
even at low degrees of undercooling. This is a result of the lower energy 
barrier for critical nucleus formation in the case of heterogeneous nuclea- 
tion. 

If the liquid contains a small amount of active admixtures, the nucleation 
rate of homogeneous nucleation is higher at a higher degree of supercooling 
than the nucleation rate of heterogeneous nucleation. The weaker tempera- 
ture dependence of the stationary heterogeneous nucleation rate in compari- 
son with that of homogeneous nucleation permits the experimental sep- 
aration of the influence of homogeneous and heterogeneous nucleation [37]. 

111.4. Nucleation in binary systems 

Analysis of nucleation in binary systems is complicated by the existence 
of a further parameter on which the nucleation process depends, namely the 
concentration C of one component in the system. The work needed for 
nucleus formation of the new phase in the parent phase, AG, depends not 
only on the temperature and on the number of atoms in the nucleus, but 
also on the concentration. This function AG has an extreme value at a 
saddle point (in the surface AG in the space (n,C)), which is defined by 

i3AG 0 -= 
an (22) 

aAG 0 -= 
X (23) 

The values of the concentration C’ and of the nucleus size n* which are 
equivalent to the values of the critical nucleus in one-component systems 
correspond to this saddle point. It is therefore assumed in stationary 
nucleation theories that the growth of the new phase passes over this saddle 
point. These theories are given, for example, in refs. 156-166, where it is 
possible to find model relations for the function AG. The field theories, 
which are based on the Landau-Lifschic form for the free energy, deal with 
nucleation in binary systems and are given in refs. 167-170. It can be shown 
(see ref. 171) that, in the case of equilibrium of the critical nucleus in the 
system, the concentration corresponding to the conditions of eqns. 22 and 23 
is identical with the concentration corresponding to the equilibrium phase 
diagram of a given binary melt (at low supercooling). 



In binary systems, further growth of the nuclei is influenced by the 
concentration distribution as well as by the temperature distribution. This 
phenomenon was studied in the growth of a single nucleus of spherical 
shape, including diffusion in the surrounding neighborhood [172-1751. In 
these papers it was shown that the concentration of the nucleus changes with 
the nucleus radius, and for large radii it approaches the growth of the plane 
interface; the rate of the solidification changes with time. During the growth 
of these nuclei equilibrium conditions are assumed at the phase interface. 
The influence of supersaturation of the single components of binary systems 
on the mean concentration of the nuclei was also studied [176,177]. For a 
high level of supersaturation most of the nuclei shift from the saddle point 
(see refs. 178-182). The thermodynamic conditions for formation of the 
nuclei of the metastable phase from the undercooled melts were investigated. 
It was shown that a change in temperature changes the position of the 
saddle point, and that the composition of the critical nucleus depends on the 
supercooling (it may differ from the composition which corresponds to the 
equilibrium composition). Isoconcentration nucleation of the hypothetical 
ideal solution most probably occurs at temperatures T = TJ3, where TE is 
the equilibrium temperature of the solidification. 

1700 

cz 

I501 

Fig. 11. Kinetic phase diagram of Cu-Ni alloy during the nucleation process. Average 
velocity of molecules u, =10P3 m s-l, cooling rate cp = 0 K s-l (l), lo* K s-l (2). 
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Binary nucleation is studied in the system where two partly non-mixing 
components exist in the liquid phase (see ref. 183). In such a system, nuclei 
of each non-mixing component can be formed. The case where the critical 
nuclei of both phases have the same value for the free energy of formation 
and then nucleate at the same frequency could occur. 

Besides the above-mentioned dependences the influence of the cooling 
rate and of the external conditions on the nucleation of multicomponent 
systems were studied. Within the framework of the stochastic theory of 
nucleation (see ref. 184), the form of the phase diagrams was derived for the 
nucleation process of binary systems. These diagrams give the temperature 
at which the first critical nucleus of the solid phase is formed, and the 
critical nucleus composition as a function of melt composition and cooling 
rate. In the case of phase equilibrium, these diagrams approach the equi- 
librium phase diagrams (see ref. 171). 

Figure 11 shows the phase diagram for Cu-Ni alloy. The influence of 
convection in the melt on the nucleation process was studied in ref. 184 (Fig. 
12). The undercooling occurring on formation of the first critical nucleus 
decreases with increasing mean velocity of the molecules, and the concentra- 
tion of the solid phase approaches the concentration which corresponds to 

Fig. 12. 
cp =1os 

0.5 C 1 

Kinetic phase diagram of Cu-Ni alloy during the nucleation process. Cooling 
K s-l, average velocity of molecules u,=10e3 m s-’ (l), low5 m s-l (2). 

rate 
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Fig. 13. Thermographic plots of the crystallization process. In diffusive heat transfer (2), 
nucleation starts at a higher supercooling of the solution than during convective transfer of 
heat (1). 

equilibrium conditions. This fact was experimentally observed in ref. 185, 
where convection in the melt phase was altered because of a change in the 
viscosity of the melt from which the solid phase nucleated (see Fig. 13). It 
follows, from this analysis and from the model cases, that it is necessary to 
devote major attention to the influence of external conditions (cooling rate, 
convection, external field, etc.) on the nucleation process. This is especially 
so for conditions which occur in extremum conditions (fast cooling, high or 
zero gravity, etc.). At the same time, much attention must also be paid to the 
state of the supercooled liquid phase. 

IV. GROWTH AT THE PHASE INTERFACE 

Phase transformation occurring at the phase interface is, as far as we can 
tell, completely opposite to nucleation. In the case of homogeneous and 
heterogeneous nucleation, the new phase in the medium of the liquid phase 
is formed mainly in consequence of fluctuations. In growth at the phase 
interface, on the other hand, the new phase already exists in the system. This 
is why the phase transformation occurs via a different mechanism with a 
lower energy barrier. In practice this means that rather less undercooling is 
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Fig. 14. Different positions of atom adsorptions during growth: 1, ledge ad-site; 2, kink; 3, 
ledge hole; 4, surface ad-site; 5, surface hole. 

usually necessary for the growth of the new phase. However, this undercool- 
ing depends on the cooling rate and may be influenced. 

The final growth process at the phase interface is influenced both by mass 
transport to the inter,face and by heat transport (by diffusion or convection), 
and also by the kinetics of the phase transformation itself, which may also 
change during the process and which is connected to the structure of the 
phase interface (see, for example, ref. 186). 

The phase interface, which we comprehend as the region between the 
“perfect” solid phase and the “perfect” liquid phase, can be sharp (there is 
an immediate change from the solid to the liquid phase, i.e. changes in 
physical quantities occur over the distance of one lattice parameter) or 
diffuse (layers exist at the phase interface and it is not possible to say clearly 
if they belong to the solid or to the liquid phase; changes in physical 
quantities occur over the distance of several lattice parameters). A further 
possibility is that an absorption film (or quasiliquid layer) is formed on the 
surface of the solid phase, which usually has a higher concentration of 
dissolved substance in comparison with the liquid concentration [187]. 

In the case of the sharp phase interface we can divide the surface into two 
types: atomic smooth (without overhangs, steps or “kink sites”) and atomic 
rough (where kink sites prevail (see Fig. 14)). 

A theoretical description of the structure of the phase interface is dealt 
with in refs. 188-191. The stability of the transition layer in the stationary 
regime (when the growth rate R = 0) is given in refs. 192 and 193. 
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The quality of the phase interface depends partly on the quality of the 
liquid and solid phases (on the difference between the free energies}, and 
partly on the temperature (on the degree of superc~ling). Analysis of the 
behaviour of the thermodynamic quantities which characterize the phase 
interface is given in refs. 194-198 within the framework of the theory of 
discontinuity surfaces. In these references the basic thermodynamic equa- 
tions which describe the conservation laws of mass, energy and impulse on 
the phase interface, which are connected with the flow of these quantities 
and with the surface curvature, were formulated. These equations may be 
used as the boundary conditions of the equation describing mass and energy 
transport in the bulk phases. 

Large numbers of works [199-2011 are devoted to the diffusion interface, 
but hitherto it seems possible to explain the known data of the kinetics of 
crystallization only on the basis of the sharp interface [187]. 

Burton, Cabrera and Frank [202] introduced the so-called “terrace- 
ledge-kink” model, and showed that under a certain critical temperature TR 
(roughening temperature) the crystal surface is atomically smooth, whereas 
at temperatures T > TR the surface is atomically rough (the edge free energy 
vanishes). They used the exact Onsager solution [203,204] for the Ising 
model for spin -l/2 and obtained 

k,TR 
- = 0.567 

@ (24 

for the square surface lattice, where @ designates the binding energy. For 
the vapor-solid interface eqn. (24) gives TR above the temperature of 
melting. This is not observed in the set of materials. 

Jackson computed the change in Gibbs energy for the addition of 
molecules of the coexisting melt onto the plane surface, assuming a random 
molecule distribution in a mean field approximation, and he derived a 
widely used factor for the determination of the surface roughness [205] 

where L is the internal energy change per atom (often approximated by the 
latent heat) and the anisotropy factor fhkl is the ratio of the number of 
lateral neighbors of an atom from the crystal surface and the bulk coordina- 
tion number. This gives the rough interface for cr < aR and the smooth 
interface for ar > aR, where aR designates the critical (Y value for which 
Jackson obtained ~1 R = 2 for the (001) vapo r c - ry stal interface of the Kossel 
crystal (i.e. a simple cubic crystal with only nearest neighbor interactions). 
This appro~mation gives the rather higher TR value in comparison with the 
result of eqn. (24). Jackson’s cy factor gives a good approximation to TR for 
the melt-crystal transition, but the theoretical values for the vapor-crystal 
transition give a higher TR value in comparison with experiment. If we 
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include surface relaxation in the computation of the surface roughness, i.e. if 
we assume that the binding energy of the solid phase near the surface is 
different from that in bulk, we obtain agreement with the experimental data 
even in this case [206]. 

Van Geijeren [207] and Knops [208] elucidated the character of the 
roughening transition. It was shown that the roughening transition has an 
infinite order, i.e. all derivatives of the free energy with respect to tempera- 
ture are equal to zero at the transition point. 

Wilcox [209] assumed that the surface is formed by a set of steps, and he 
showed that the number of steps increases with increasing temperature 
gradient, i.e. the surface becomes rough at sufficiently high temperature 
gradients. 

If the crystallization motive power (Ap) is higher than a certain critical 
value, the surface becomes rough even below the roughening temperature 
TR, and so-called kinetic roughening occurs [210]. 

The models of the dependences of growth rate on supercooling are 
summarized in ref. 75. The rough surface models (Jackson’s model) are 
compared with the Monte-Carlo computation method. In this work the 
existence of kinetic roughening is also shown. 

The problem of quasiliquid layer formation on the crystal surface during 
growth from the vapor has been investigated since about the forties. Stranski 
[211-2131 considered that a necessary condition for quasiliquid layer forma- 
tion is the total wetting of the crystal surface by the parent liquid. This 
condition was used later as the basis of a phenomenological study of the 
problem [214,215]. Numerical simulation of the molecular dynamics [216,217] 
confirmed the existence of quasiliquid layer formation on the crystal surface. 
Hitherto neither surface roughening nor the existence of the quasiliquid 
layer was experimentally observed [218]; there existed only indirect experi- 
mental data [219-2271. Experimental data concerning the existence of a 
quasiliquid layer on the crystal surface and the structure of this surface are 
not simultaneously available. Recent experiments support a difference be- 
tween surface melting and roughening [2X3]. 

The vapor-liquid-crystal mechanism is the basic mechanism of needle 
crystal growth. The growth rate R - (Ap)*, where Ap is the difference 
between the chemical potentials of vapor and crystal phases. In typical 
cases, the energy of the crystal-melt interface is 5-10 times lower in 
comparison with the energy of the crystal-vapor interface. For this reason 
the nucleation rate of two-dimensional nuclei at the liquid-crystal interface 
is much higher than at the vapor-crystal interface. 

Several mechanisms of phase transformation kinetics, based partly on 
phase interface quality and partly on the thermodynamic properties of the 
system, have been suggested. 

Gilmer (see ref. 228) used the initial properties of the growth rate on the 
phase interface together with the following models: the Ising model, the 
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Monte-Carlo model and two-dimensional nucleation. In this analysis it was 
shown that growth rate oscillations, which disappear above the roughening 
temperature, can exist below the roughening temperature. In ref. 229 the 
connection between the phase interface dynamics and the interface structure 
was studied. 

Layer growth is usually assumed to occur during growth at the atomically 
smooth surface (when steps are formed on the surface), which spreads at a 
certain lateral velocity. A step is defined as the boundary between one part 
of the smooth surface and a second part which is one layer thickness higher. 
Numerical computation has shown that growth on the surface occurs as long 
as attainable steps exist on the surface [230-2321. A number of models is 
used according to the origin of the step formation. Growth then follows the 
“current” of the steps along the surface [233]. 

Before lattice defects were recognized as a possible source of the steps, it 
was assumed that growth on the smooth interfaces could occur only by 
surface nucleation with the further growth of two dimensional nuclei (the 
height of a nucleus is equal to the thickness of a layer). Modern solid state 
technology, which enables us to obtain crystals without defects, provoked a 
new interest in growth by the heterogeneous nucleation mechanism. On the 
crystal surface, adsorption, diffusion, collisions between molecules (or atoms) 
and desorption exist. Clusters of the several molecules, which can decay, are 
formed, but growth is advantageous from a thermodynamic point of view if 
they reach a certain critical size. The formation of the critical nucleus is the 
key factor in all two-dimensional models (in a similar way to homogeneous 
nucleation). It is also possible to determine the work needed for critical 
nucleus formation and its size by a similar method to that in homogeneous 
(three-dimensional) nucleation [233-2361. The growth rate of the phase 
interface R is proportional to exp( - C/Ap). It is possible to divide surface 
nucleation theory according to the relative time scale of the nucleation rate 
and the lateral growth rate u1 (the rate of spread of steps along the surface) 
into the following models [225]. 

(i) Mononucleus model ( u1 = co, i.e. the entire monatomic layer forms at 
the moment of formation of the first critical nucleus). 

(ii) Polynucleus model ( u1 = 0, i.e. a sufficient amount of critical nuclei 
must be formed in order that layer formation may occur). 

(iii) Birth and spread model (u, = constant # 0, i.e. growth follows nuclea- 
tion and further lateral growth at a finite rate). 

It can be shown that the height of the nucleus may not be mononuclear 
during surface nucleation, but depends on the surface energy at the phase 
interface and on the degree of supersaturation Ap [237,238]. 

Two-dimensional nucleation in binary systems has been studied by vari- 
ous workers [239-2421. In these works the dependence of surface energy on 
concentration is considered, and the saddle point in the dependence on 
energy of formation of a two-dimensional nucleus as a function of size and 
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concentration is established. The growth rate of the phase interface is also 
determined. The influence of defects in the phase interface on surface 
tension and on growth is investigated in ref. 239. 

Many crystal surfaces grow relatively quickly at a relatively low degree of 
supercooling, and this cannot be explained by the surface nucleation mecha- 
nism [234]. Frank et al. [202,243] suggested a spiral growth mechanism being 
a permanent source of the steps. The screw dislocations, which have the 
greatest influence on the growth kinetics at low degrees of supercooling, 
become the source of spiral growth [244]. Burton, Cabrera and Frank solved 
two problems: (a) the flow of the growth unit to the steps by the surface 
diffusion mechanism, and (b) the form of the stationary growth spirals when 
the surface diffusion is neglected. 

Growth spirals were observed in a number of experimental works 
[245-2501. Moving steps and rotating spirals on the surface of crystals 
growing from solution were also observed recently [251,252]. 

The dependence of the growth rate on the supersaturation for spiral 
growth and two-dimensional nucleation growth was experimentally studied 
[253]. R - ( AI_~)~ at low degrees of supercooling and R - Ap at high degrees 
of supercooling. 

Near the interface having low atomic roughness, the distance between the 
sites which have a higher binding energy to the growth unit (i.e. the distance 
between the kink sites) is high with respect to the molecular dimensions. 
Diffusion must therefore be included in the kinetic models [254]. Diffusion 
to growth sites can occur in the adsorption states of the surface (surface 
diffusion), directly through the surface layer of the parent phase (volume 
diffusion), or simultaneously by surface and volume diffusion. 

Burton, Cabrera and Frank assumed that the limiting growth mechanism 
is surface diffusion, and they determined the growth rate R for the case of 
parallel equidistant steps [202]. They obtained the result R - A/J’ at low 
levels of supersaturation Ap and R - Ap at higher levels of supersaturation. 
Mullins and Hirth applied a generalized form of the BCF (Burton, Cabrera 
and Frank) theory of equidistant steps to non-equidistant steps [255]. 

The Chernov model of bulk diffusion gives the same qualitative results for 
the dependence of growth rate R on supersaturation Ap [256]. Chernov 
assumed that the distance between neighboring kink sites is sufficiently 
small that the edge of the steps can be considered as a linear continuous 
region where growth units can be involved and the concentration profile 
depends on the distance from the crystal surface and from the step position. 

Gilmer, Ghez and Cabrera included the influence of bulk and surface 
diffusion [257], and this model was used for derivation of the dependence of 
growth rate on supersaturation [258]. R - Ap2 at low levels of supersatura- 
tion and R - Ap at high levels of supersaturation. 

In the case of the atomically rough surface of the phase interface, the site 
of contact on the crystal surface is simultaneously the growth site, and 
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surface diffusion and actual interface morphology can be neglected. The 
Wilson-Frenkel model assumed that the transition rate of the molecules 
from the crystal to the parent phase reaches an equilibrium value (it is in 
fact higher). They further assumed that all surface sites are simultaneously 
growth sites (i.e. surface diffusion is infinitely fast), giving the upper limit of 
the growth rate [254]. In fact, the surface is never “perfectly” rough. R - Ap 
at low supercooling Ap. 

Most of the models of equilibrium structure and growth of the crystal 
surface used the so-called solid-on-solid (SOS) model of the interface 
[259-2611. In this model overhangs are not permitted, and hence the crystal 
can be considered as a collection of interacting columns perpendicular to the 
surface. (The SOS model is thus a subclass of the Ising model.) Growth is 
achieved by the transition of molecules from the melt to the solid phase, and 
vice versa (the effects of surface diffusion are neglected). The influence of 
the difference in structure between the liquid and solid phases at the phase 
interface is investigated in ref. 262. While the atoms are randomly adsorbed 
on the surface, the probability of transition of the adsorbed atoms from the 
crystal surface to the parent phase depends on their environment. Various 
approximations were used for the interaction of the adsorbed atoms with 
their environment [263-2651, and these may be compared with the Monte 
Carlo results [266,267]. It follows from Monte Carlo simulation that linear 
growth kinetics occur when Jackson’s factor (Y < aR = 3.2, and non-linear 
growth kinetics occur when (Y > aR. This may be fitted in principle to 
two-dimension nucleation curves of the birth and spread model [252]. The 
value aR corresponds to the roughening temperature (it differs from the 
critical value aR = 2 established by Jackson). Gilmer, on the basis of Monte 
Carlo simulation, established the growth rate dependence on supersaturation 
for surfaces with screw dislocations [268]. Initially growth by the mechanism 
of spiral growth occurs (for a > aR at low supersaturation), but at higher 
supersaturation spiral growth and two-dimensional nucleation occur simul- 
taneously. Two-dimensional nucleation becomes faster than spiral growth 
for Ap/k,T = 2.8, but the change in dominant growth mechanism strongly 
depends on surface diffusion [272]. For (Y > aR = 3.2 continuous or “normal” 
growth occurs, where the upper limit of the surface diffusion is given by the 
Wilson-Frenkel model. 

Kinetic models involving surface diffusion were widely applied to binary 
and multicomponent systems. Kinetic coefficients and growth rate depen- 
dence on the model and growth parameters for one-component and two- 
component metal systems were computed in refs. 269-273. 

Numerical models of growth on the phase interface (which are still used 
more often today) are studied in refs. 274-285 and 288. On the basis of 
these computations, the phase interface structure was studied. The probabil- 
ity of transition of the atoms from the liquid to the solid phase is an 
important parameter in these computations. The numerical computations 
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use solution of the Fokker-Planck equation or the Monte Carlo method. On 
the basis of these methods, the influence of impurities on crystal growth was 
studied [281,286]. The molecular dynamics method, where the classical 
equation of motion for the molecular system is solved and the change in 
mean positions followed, belongs among these methods. The phase interface 
within the framework of this method is investigated in refs. 216 and 
287-290. 

As a point of interest we can now introduce here quantum-mechanical 
computations of the phase interface motion-the increase or decrease of 
atoms on the phase interface. These computation methods are used in the 
description of 4He crystallization at T --) 0 K. Under such conditions the 
quantum effects appear as, for example, Kapica’s temperature jump on the 
phase interface [277]. 

Crystal growth kinetics have a great influence on crystal quality. For 
instance, crystals grown on perfect smooth surfaces (requiring high super- 
saturation and supercooling) will differ from crystals grown on a different 
surface with a much lower degree of supercooling [234]. It is therefore 
important to study kinetic processes at the phase interface. 

The growth process at the phase interface is also influenced by mass and 
energy transport in the system. Hitherto we were only looking at phase 
transformation kinetics near the phase interface. We are now interested in 
the entire solidification process of binary melts at the phase interface. The 
composition (concentration) of the solid phase at the phase interface as a 
function of a time will be followed. In principle, three cases are distinguish- 
able: (i) a solidification process near thermodynamic equilibrium (at very 
low supercooling); (ii) a stationary regime with non-zero supercooling, which 
is time independent (like concentration of a liquid phase) and occurs at a 
constant rate; (iii) a non-stationary regime where undercooling and con- 
centration of the liquid and solid phases at the phase interface are time 
dependent, as is the solidification rate. 

We can use equilibrium phase diagrams (see refs. 25 and 291) to describe 
processes of the first case, which are common with slow cooling and fast 
phase transformation kinetics (e.g. for the cooling rates of the metals up to 
lo3 K s-l). The influence of temperature fluctuations on growth at the 
phase interface involving equilibrium phase diagrams was studied in ref. 
292. 

So-called kinetic phase diagrams (for the theoretical basis see Section V) 
for a description of stationary non-equilibrium processes where equilibrium 
phase diagrams do not suffice were developed. These phase diagrams 
depend on the experimental conditions of the solidification process, such as, 
for example, cooling rate, supercooling at the phase interface, etc. The 
influence of individual parameters on the kinetic phase diagrams in the 
model cases was investigated (see refs. 270-273 and 293-308). 

Figure 15 shows the influence of growth rate on the position and shape of 
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Fig. 15. Kinetic phase diagram for various 
R = 0.2 (relative value). See ref. 303. 

growth rates R (the model example): 1, R = 0; 2, 

the phase diagram (according to theory from ref. 303). It can be shown that 
the phase diagram shifts to lower temperatures with increasing growth rate 
and the diagram shape may even change (from eutectic to cigar shape, see 
for example ref. 303). Figure 16 shows the dependence of growth rate on 
supercooling in this case (see ref. 271). 

For non-stationary processes a completely different situation occurs. Here 
phase diagrams can not be used because the concentration of the solid and 
liquid phases and the degree of supercooling change with time. These 
depend both on the given material and on the course of the entire process. 
Therefore, the description of such a solidification process is necessarily 
complex. Such a complex description of non-stationary processes was devel- 
oped within the framework of the stochastic theory of solidification (see ref. 
273) for some model situations of Cu-Ni alloy solidification. The solidifica- 
tion process was modeled as the solidification of a melt column, which is 
cooled down at a constant rate at one end. Mass and energy transport 
occurs only by diffusion (if we neglect convection). Within the framework of 
this model, the time dependence of the concentration of the liquid phase 
C,,(t) and that of the solid phase C,,(t) on the phase interface, that of the 
undercooling AT(t) on the phase interface (corresponding to the equi- 
librium solidification temperature for the liquid phase of concentration 
C,,(t)) and the solidification rate R(t) were obtained (see ref. 273). The 
results are shown in Fig. 17. The stated values at various cooling rates cp, the 
diffusion coefficients in the liquid phase DL and the parameters connected 
with the rate of phase transformation kinetics in the model case is given in 

Table 3. Qualitative changes of the stated parameters with changes in the 
parameters cp, DL and v are given in Table 4 (see ref. 273). In the case of 
Cu-Ni alloy solidification, it was shown within the framework of the given 
model that the process behaves as a stationary one up to a cooling rate of 
lo3 K s- ’ under conditions which are very close to equilibrium ones. The 
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Fig. 16. (a) Dependence of the stationary solidification rate R on the undercooling for Cu-Ni 
alloy and concentration of liquid phase C,: 1, CL1 = 0.35; 2, C, = 0.75. T, and T, are 
equilibrium temperatures of solidification of the alloy with concentration C,, and C, 
respectively. (b) Dependence of the stationary concentration of solid phase Cs on undercool- 
ing for Cu-Ni alloy and concentration of liquid phase C,: 1, CL, = 0.35; 2, C,, = 0.75. 

process is non-stationary at higher cooling rates. In this way we can estimate 
the limit of applicability for equilibrium and kinetic phase diagrams. 

It follows from the analysis given how various dependences of the new 
phase composition can be obtained if the experimental conditions of its 
formation are changed. At the same time, a change in structure would occur, 
an amorphous phase would be formed, the metastable phase would freeze, 
etc. At present we are restricting ourselves to temperature changes. It would 



389 

L 

- 15 

1510 ’ 

- 0.65 

0.45 - 

(Cl I 
0.08 - 

Fig. 17. Time dependences of parameters (a) AT (undercooling at the solidification front) 

and (b) T,, CL? and Cs, and (c) the solidification rate R for cooling rate cp =106 K s-t, 
v=3x101c s-l and DL = 0.73 X10-’ m2 s-l (the diffusion coefficient in the liquid phase). 

TABLE 3 

The illustration of the calculations of the solidification of the 50 Cu-50 Ni ahoy for the 
chosen values of parameters (t = lop4 s) 

cp (KS-‘) Y (s-l) DL (m2 s-l) T, (K) CL, C,, R (m s-l) C& r (K) 

103 3XlO’O 7.3x10-s 1556.9 0.4999 0.6557 7.41 x1O-4 0.6558 1557.1 
lo3 3 x 10’0 7.3 x 10-4 1556.9 0.5000 0.6557 7.63 x~O-~ 0.6558 1557.1 
103 3x106 7.3 x10-s 1556.9 0.5000 0.6558 7.68~10-~ 0.6558 1557.1 
lo6 3 x 10’0 7.3x10-8 1461.6 0.3254 0.4749 0.159 0.4788 1520.5 
lo6 3 x 1o’O 7.3 x 10-4 1476.8 0.4999 0.6451 0.206 0.6558 1557.1 
lo6 3x106 7.3x10-8 1455 0.5000 0.6430 2.47~10-~ 0.6558 1557.1 

C&(t) is the equilibrium solid phase concentration at the liquid phase concentration C,,(t). 
r(t) is the equilibrium temperature of melting at the liquid phase concentration C,,(t). 
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TABLE 4 

The qualitative dependences of the parameters characteristic of the solidification conditions 
on ~0, Y and DL 

Increase Change of value 
of value 

T, AT C L? AC R 

‘p 

DL 
V 

Intensive 
decrease 
Decrease 
Increase to 
equilibrium 
value 

Increase 

Increase 
Decrease 
to zero 

Decrease 

Increase 
Decrease 

Decrease 

Decrease 
Increase 

Nonlinear 
increase 
Increase 
Increase 

be necessary to include in the theory the influence of pressure changes, 
changes in external fields, etc., where we would expect new effects under 
extremum conditions of new phase formation. We also did not investigate 
the changes which occur during cooling of the liquid phase (complexes, 
clusters, viscosity changes, etc.). It is thus possible to say that we are at the 
begkming of const~ction of theory for so~~fi~tion processes. The basis of 
this theory will be summarized in the Section V below. At present, direct 
experiments, in which it is possible to follow the given processes, are not 
possible although the observed effects are strongly connected with the 
quality of the phase formed. 

V. ANALYSIS OF RECENT THEORETICAL DESCRIPTIONS OF PHASE TRANSFOR- 
MATIONS 

In order to construct a theory of phase transitions, we must consider 
processes which occur during phase transformation and which influence the 
results of the entire process. These may be divided into several groups. 

(1) Primarily, this is a question about phase changes. Thus we must know 
the state and composition of the mother phase (liquid, gas, etc.), determine 
the conditions (pressure, temperature, etc.) under which the new phase 
forms in the system and determine its structure and composition. 

(2) The new phase forms gradually in the system rather than instanta- 
neously. We may observe the time evolution of the phase transformation, 
especially as a dependence on external conditions (thus the kinetics of phase 
transformation). At the same time, we must be aware that phase transforma- 
tion occurs in two different steps. In the first stage, the nucleus of the new 
phase forms in the mother phase and does not constitute the region of 
another phase. Nucleation theory deals with this process. In the second 
stage, the growth of the new phase occurs at the interface (so~dification 



391 

front), thus the new phase grows into the mother phase from the part of the 
new phase which already exists. 

(3) The conditions at the point at which the phase transformation occurs 
are determined by energy and mass transport in the system. We must thus 
study the temperature and concentration distribution in the system and their 
changes with time in connection with initial and boundary conditions. 

We shall now return to the particular points above and briefly estimate 
the results achieved in the theory relating to the applications considered. 

V. I. Equilibrium and metastable phases 

Phenomenological thermodynamics [27,309,310] deals with the conditions 
of phase transformation and the equilibrium coexistence of phases. This 
theory considers that phase transformation occurs at one point (e.g. a certain 
temperature and pressure) in the entire system and that the phase transfor- 
mation is characterized by the behavior of the thermodynamic values (Gibbs 
potential, free energy, entropy, etc.) in the vicinity of the phase transforma- 
tion point. The equilibrium phase corresponds to the minimum of the Gibbs 
potential. Phenomenological thermodynamics studies the static properties of 
the system. 

As regards the equilibrium coexistence of phases, the well-known condi- 
tion of equality of chemical potentials of different phases was derived at 
constant temperature and pressure in the system. 

Phenomenological thermodynamics is based on the behavior of thermody- 
namic potentials. It is thus necessary to know or to model the dependences 
of, for example, the Gibbs energy G on temperature, on the intensity of 
external fields, on concentration or on the order parameter n which char- 
acterizes the new phase (e.g. change in concentration, magnetization, etc.). 
Most frequently used is the Landau-Ginzburg relation [311] 

G= /&Go + ‘~~‘17~ + Bon4 + yo grad 7)) dx3 (26) 

where V is the VOhIIe of the SySteIn and G,,, (Yo, & and yo are coefficients 
which depend on the temperature and space coordinates. This form of 
potential G describes the behavior of the system in the vicinity of the phase 
transformation. It is used to describe the nucleation of metastable states and 
the phase transition dynamics. In this method the equilibrium and metasta- 
ble states are determined from the condition 6G = 0. The stable states 
correspond to the absolute and metastable states to a local extremum of G. 
These conditions are assumed at a given temperature and at constant 
boundary conditions. Thus, for example, the concentration distribution in 
the system with a non-homogeneous distribution of temperature may be 
determined. The Landau-G&burg form of the Gibbs potential is used in 
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renormalization group theory [312], which is at present the most successful 
theory of phase transitions. 

The renormalization group is the group of symmetry operations which act 
on the space of u-parameters of the Hamiltonian of the system. These 
operations are determined in the following way. The volume of the system is 
first divided into blocks of volume La, in which the values of the Hamilto- 
nian parameters are substituted for their average values, and then the 
volume is reduced in the ratio l/L,. We thus obtain the new Hamiltonian 
for our system with new values of the parameters a’. The group of 
operations R,: a + a’ is the renormalization group. The points a* for 
which R,a* = u* are the stationary points. All a for which lirnLR ~ o. R,a 
= a* form the critical surface. The renormalization group method is based 
on the main hypothesis that the parameters of the Hamiltonian at the 
critical point T, of the phase transformation are located on the critical 
surface. This is connected with the fact that at the critical point the 
correlation length of the order parameter exceeds all limits. Solution of the 
model concentrates on a description of the critical surface. The renormal- 
ization group method was formulated for quantum systems and can be used 
for the description of phase transitions in these systems. 

The dynamic renormalization group method enables us to observe the 
time dependence of the order parameter 11 and to include the fluctuations of 
n in the kinetic equations by Langeven’s method (see below). 

For the determination of thermodynamic potentials of simple systems we 
may use classical or quantum statistical physics, using the partition function 
of the system [313] and the Hamiltonian of the system. 

As regards the modeling of the dependence of the Gibbs potential on the 
constitution of binary systems, which is used for the construction of equi- 
librium phase diagrams, Table 2 shows the separate models. Deviations from 
ideal behavior of binary systems results in the existence of eutectic, peri- 
tectic or monotectic points in the phase diagrams [314]. Reference 315 deals 
with relations between interatomic forces and tip of the phase diagram; it 
was for example shown that a eutectic structure arises if the components A 
and B have different structures. 

An interesting generalization of the thermodynamic description of phase 
transformation is the theory of diffuse phase transitions [316], which as- 
sumes that the phase transformation takes place in the temperature interval 
in which both phases exist in the system. The result of this assumption is 
new functions of the order parameter on temperature (e.g. magnetization in 
the vicinity of the Curie temperature in ferromagnetics, see ref. 317), the 
possibility of hysteresis during cyclic cooling or heating, or the non-singular- 
ity of the temperature dependence of heat capacity, susceptibility, etc. 

These descriptions refer to the static equilibrium properties of the system. 
In spite of the indisputable successes of these theories and their wide 
extension, they are not in principle able to predict what phase or structure or 
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composition of new phase arises during the given experimental conditions. 
They give information about which states present in the equilibrium state of 
system can or cannot occur. The relaxation time of the transition of the 
system to this equilibrium state depends on the properties of the system and 
on the conditions of the process. Its value may be small (e.g. lo-l3 s for 
metals) or large (e.g. thousands of years for glasses). 

If we appreciate that the thermodynamic state of the system changes 
during non-isothermal conditions, it is clear that the kinetics of phase 
transformation plays the main role in phase transformation. If the phase 
transformation is more rapid, we may approach the thermodynamic equi- 
librium conditions. Cases may occur in which the slowness of the phase 
transformation can substantially influence the result of the process. In 
undercooled liquids, the metastable phases can freeze. It is thus necessary to 
study the metastable states of the system (which are determined by the local 
extrema of the thermodynamic potential) and the dynamics of their forma- 
tion. 

In connection with the modification of solid state surfaces by lasers, a 
new field of solid state physics is now developed. This is the theory of highly 
excited states of solid phases, which introduces new effects connected with 
highly excited states [318]. 

The indisputable benefit of a description of statics of the system is that 
we study the non-equilibrium conditions (undercooling, supersaturation, 
etc.), we must refer these to the equilibrium states which we must therefore 
know. 

V.2. Kinetics of phase transformation 

This field may be divided into nucleation processes and growth on the 
interface. These basic theories were analyzed in the Sections III and IV. The 
most recent results are now summarized. 

Among modern theories which deal with nucleation, stochastic theory, the 
renormalization group method and field theories based on the Landau- 
Ginzburg potential are considered. Stochastic theory is successful with the 
Fokker-Planck equation (eqn. (6), where the coefficients c, and e, repre- 
sent the probabilities of transition of an atom to or from the clusters. The 
function F,(t) represents the probability distribution of the existence of a 
cluster of a given volume in the system at time t [37,319-3211. The 
Lyapunov function of the most probable evolution of the system was used to 
determine the critical value of the nucleus, which is equivalent to the critical 
value of the nucleus in classical theories [321]. 

Modelling of the cluster growth by the Monte-Carlo method [322] within 
the framework of the Ising model pertains to these theories. The results are 
comparable with solutions of eqn. (6). Calculations within the framework of 
the dynamic renormalization group are given in ref. 323. The transforma- 
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tions over the space of coefficients of kinetic equations (a,C = { &‘,C} + 5) 
form the dynamic renormalization group (5 represents fluctuations in the 
system). This is an exact calculation of nucleation, but the results do not 
exceed the frame of calculations using theories mentioned, such as the 
calculations which use the Landau-Ginzburg potential in the Ising model 
[123-125,168,169,311,324]. These methods have an advantage over classical 
theories of nucleation, as they start from first principles and use a statistical 
description in the given model Hamiltonian. They describe the nucleus as a 
collective excitation in the saddle point. Fluctuations are given by the 
expansion about the critical nucleus. 

To finish, we would like to mention that we number among our theories 
quantum mechanical calculations of cluster states, their energy and structure 
which corresponds to the minimum energy, etc. [325,326]. 

We can complete our review of the theory of growth at the interface with 
several interesting results. The Monte-Carlo method was used in a study of 
the structure and composition of the solid phase during epitaxial growth on 
a substrate [327]. Here it was assumed that the intermolecular forces acting 
on the substrate were not additive, but depended on the relative cover of the 
surface by the new phase. The structure and composition of the surface 
phase depends on the intermolecular forces. 

The motion of the interface has been studied using field methods based 
on the Ginzburg-Landau equation: in the region of equilibrium the change 
with time of the order parameter n(r) is equal to the product of the kinetic 
coefficient D and the variation in free energy F with respect to 11 [328] 

(27) 

The coefficient D and the energy F have been modelled at constant 
temperature. A similar equation was used in ref. 329 to study the order 
parameter changes under constant rate of interface motion (in the stationary 
case) 

(28) 

The Landau-G&burg expansion was used for determination of the free 
energy F. It was shown that a critical rate R exists, above which non-ordered 
phase growth occurs. This contributes to the kinetic phase diagram. 

Within the framework of linear stability theory there are works on the 
stability to shape perturbation of the plane interface in binary systems 
[314,330-3401. On the basis of this analysis stability conditions were derived, 
but they use equilibrium phase diagrams at the interface and assume known 
gradients of temperature and concentration at the interface. 

The term linear stability theory is understood to mean the stability of 
equations which describe the stationary or equilibrium state of the system 
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(the balance equations using the boundary and initial conditions) with 
respect to an arbitrary small perturbation u (higher powers of u are 
neglected). If for some perturbation growth is advantageous (U fulfils the 
basic equations), then the amplitude of this perturbation increases with time 
and the interface is unstable to this perturbation [341]. Linear analysis of the 
interface stability (neglecting convection) shows that the plane interface is 
stable if 

g* >l 
m&C 

(29) 

for small growth rates, where 

9* = (G% + k%)/(k + ks) (30) 

(the modified criterion of undercooling). k, and k, are heat conductivity 
coefficients in the liquid and solid phases, gs and 9, are the temperature 
gradients at the interface in the solid or liquid phases, Yc is the concentra- 
tion gradient at the interface in the liquid phase and mc is the slope of a 
plot of the equilibrium melting temperature versus the concentration of the 
liquid phase. 

This simple relation was improved by many authors (see review, ref. 336). 
The influence of convection and growth of dendrites on interface stability is 
presented in ref. 336. The influence of material anisotropy on interface 
stability and the formation and selection of figures (different structures and 
textures) during solidification is analyzed in ref. 338. The kinetics of phase 
transformation are neglected in all these models. The influence of radiation 
heat transport on interface stability in semitransparent materials is given in 
ref. 342. The morphological oscillation instabilities during rapid cooling 
were studied in ref. 330, where the influence of diffusion on interface 
stability was demonstrated. 

In ref. 183 the motion of the interface during crystal growth was ex- 
plained as expansion of the soliton wave in the system. In this paper, 
stochastic theory was used for a description of the evolution of the system. A 
constant temperature was assumed. 

We have summarized two main ways of describing the kinetics of phase 
transformation-nucleation and growth on the interface. In every system, 
however, the phase transformation occurs with both phenomena-each 
supercritical nucleus which forms in the system grows. The most complete 
description of nucleation processes and subsequent growth is given in ref. 
324, which is based on phenomenological field theory using the 
Landau-G&burg form of the free energy. The dynamic model of binary 
alloys is based on the following kinetic equation [311] 

a,7 = {%17(t)) (31) 
It has been shown that the Hamiltonian of the system must include 
interactions with the surrounding bath as well as the energy of the system 



396 

Fig. 18. Binary phase diagram with immiscibility curve (1) and spinodal curve (2). At 
temperature TI phases with concentration C, and C, are in equilibrium. Tk is the critical 
temperature of the phase decomposition. 

(e.g. in the Landau-Ginzburg form) in order to enable us to describe phase 
transformations. 

Equation (31) is the basic equation of the dynamic renormalization group 
method, although these methods were developed at a constant temperature 
in the system. 

Besides these developments of the kinetics of phase transformation 
(nucleation and growth at the interface), the study of phase transformation 
kinetics is also developed using other theories. The most important results 
are summarized below. 

First, if the system is in an unstable state, i.e. in a state below the spinodal 
curve (the curve defined by the equation ( a2G/an2) = 0), the mechanism of 
phase transformation is not nucleation. The system decomposes sponta- 
neously throughout the entire bulk. This process has been described using 
spinodal decomposition theory [343]. The system is unstable to small 
fluctuations of the order parameter. Usually, the system must be strongly 
undercooled (see Fig. 18). 

Another method, which is based on the time changes of phases, is the 
molecular dynamics method. Here, the effect of changes of temperature with 
time on the ordering of molecules may be observed. The temperature is 
simulated by limiting the bulk kinetic energy of the system. The molecular 
dynamics method is very demanding in terms of numerical calculations. It is 
limited partly by the number of interacted molecules and partly by the 
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approximation of the interaction forces (mostly using the Lennard-Jones 
potential) [37]. 

Recently functional density methods have become popular in classical 
statistical mechanics. The processes of solidification of melts during nuclea- 
tion or growth at the solidification front can be described using first 
principles [344,345]. This method is based on the assumption that the 
thermodynamic values (e.g. the free energy of the system) can be expressed 
as functions of the mean (equilibrium) density of particles p,(Y). This 
density, as a function of coordinate r’, is constant in the liquid phase and is a 
periodic function in the crystalline phase. This change in density p, repre- 
sents the phase transition. In calculations the temperature is constant and 
the structure of the solid phase is known. The choice of potential energy of 
atoms in the system is also important. Usually, the Lennard-Jones potential 
is used. On the basis of the known form of the Hamiltonian of the system 2 
(which depends on the density of atoms), kinetic equations for the mean 
density of atoms may be derived 

pr(7;‘) = z-93{ p,(F) exp[-PW- l-WI) 
where the partition function Z has the form 

Z = Tr exp[ -p(X- PN)] 

(32) 

(33) 
p = l/kBT and p is the chemical potential. The microscopic density of 
atoms is 

6 is the position of the ith particle. It can be shown that the free energy F of 
the system is a function of p,( ?‘) and 

P,(F) = ew(& + c(F)) (35) 

where c(?) is the single-particle direct correlation function, for which many 
approximations were used (it depends on the potential energy of atoms). 
Solution of this problem enables us to determine the density distribution in 
a system and to determine the interface. However, even if this method is 
exact, it cannot include all phenomena which occur at the interface and it 
cannot observe processes which are non-isothermal. 

The modern method of fractal geometry, where phase transformation 
evolution is studied, has the same imperfections [346,347]. Fractal systems 
are geometrical formations which are similar. An important fact is that the 
fractal dimension of these formations is different from the topological 
dimension, and can be different from the integral value. Different growth 
models apply to clusters or interfaces with different fractal dimensions, 
which characterize the shape of the clusters or the roughness of the interface 
[348,349]. 
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l?3. Transport of mass and energy in the system 

Transport of mass and energy in a system essentially occurs by two 
processes, diffusion and convection. In theory, the balance equations of 
mass, energy and momentum describe transport [314]. Balance equations are 
normally used in the local form. 

The mass balance equation is (continuity equation) 

a& -= 
at -v( PjLn +I;) (36) 

where pi is the density of mass of the jth component, $ is the diffusion flux 
(given by Fick’s relation) and i?_,,, is the mean velocity of convection. 

The energy balance is given by 

;P(u+o.5&J = -v{p(U+0.5u~n)~~n+~+ [l-I.zwJ} 

+ ciijg7i+ Q (37) 

where p is the total density of mass, U is the internal energy per unit mass, 
4’ is the diffusion flux of heat (given by Fick’s relation), II is the tensor of 
pressure, gj is the external field which act on a unit mass of the jth 
component, Zj is the total flux of the jth component and Q is the source of 
energy. 

The momentum balance equation (Navier-Stokes equation) is 

( L * Ln ) is the tensor u&, = u&u&,,. At high temperatures, radiation heat 
transport must be considered [350]. 

Diffusion processes may be described using the linear theory of non-equi- 
librium processes, where the flares are proportional to the thermodynamical 
forces, temperature gradient, chemical potential, etc. We may thus obtain 
the known equations of heat conductivity 

k ,,,$$ + Q,(x) = g (39) 

where QT( x) is the source of heat owing to the release of latent heat at the 
interface. 

The diffusion equation for the concentration C has the form 

DL$ + Q,(x) = g (40) 

where Q&x) is the source of concentration owing to phase transformation, 
chemical reactions, etc. 
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The solution of these equations strongly depends on the boundary and 
initial conditions. During the solidification process, the boundary conditions 
at the solidification front must be specified. In the case of the heat 
conductivity equation this means calculating the latent heat of the phase 
transition (Stefan’s condition). In the case of the diffusion equation the 
separation of one component as a consequence of different concentrations 
of the liquid and solid phases must be calculated. We must thus know the 
phase diagram for the processes at the interface which form the boundary 
conditions. A few papers exist which deal with measurements of the temper- 
ature at the interface which determines the processes of phase transforma- 
tion (see, for example, ref. 351). In the case of high temperature gradients in 
the system, non-linear dependence of heat fluxes on temperature gradients 
can be dominant [358]. References 353-365 deal with calculations of tem- 
perature distribution during the crystal growth process under given experi- 
mental conditions. References 172-177 and 366-372 deal with solution of 
the diffusion equation during the solidification process. An analysis of the 
influence of convection on solidification was given in Section II above. 

V.4. Complex descriptions of phase transformation kinetics 

Theories dealing with kinetic phase transformation are mentioned above. 
They were divided into theories of formation of a new phase, theories of 
growth at the interface and theories of mass and energy transport in the 
system. In order to predict the result of the experimental process under 
given initial and boundary conditions, we must construct a theory which 
takes all these aspects of phase transformation into account. The kinetic 
conditions of growth form the boundary conditions for energy, mass and 
momentum balance and influence the temperature and concentration distri- 
butions in the system. On the other hand, transport properties of the melt 
determine the conditions at the phase interface, and so influence phase 
transformation kinetics. 

There are in principle three cases: solidification can occur near conditions 
of thermodynamic equilibrium (very low degrees of undercooling); a sta- 
tionary regime can occur with non-zero undercooling, which is constant with 
respect to time (as is the concentration of the liquid phase on the interface 
and the growth rate) and eventually a non-stationary regime can occur, in 
which case the undercooling, the concentration of the liquid and solid 
phases on the interface and the growth rate are dependent on time. 

To describe the first types of process, which are common with low cooling 
rates of materials with rapid phase transformation kinetics (e.g. cooling of 
metals with cooling rates up to lo3 K s-l [273]), equilibrium phase diagrams 
at the phase interface may be used. Under these conditions solution of 
Stefan’s problem can be used [340,367,373-3761 (for a summary of numeri- 
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cal methods see ref. 377), where the phase interface coincides with a defined 
isotherm (e.g. the equilibrium melting temperature or the known undercool- 
ing, etc.). Convection is usually neglected. The influence of radiation heat 
transport is summarized in ref. 378. Recently, growth rate as a function of 
undercooling has been incorporated into this known method. In the case of 
binary systems, the validity of equilibrium phase diagrams is assumed to be 
the boundary condition at the interface for the concentration distribution in 
the solid phase. The set of equations is completed by the diffusion equation 
[352,367,370]. 

The conception of kinetic phase diagrams (which depend on the experi- 
mental conditions of solidification [304,306], see Section IV) was developed 
in order to describe stationary non-equilibrium processes, where equilibrium 
phase diagrams cannot be used. In these models, constant temperature and 
concentration at the phase interface is assumed. The transport equations (in 
contrast to Stefan’s problem) are not solved. All theories of growth at the 
solidification front and thermodynamic theories of the solidification front 
(presented in Section IV) apply to this category. 

Theories which describe the evolution of the solidification front using the 
solution of kinetic equations for the distribution function g( 5, ,C,, t), where i 

indicates the position of the observed particle in the system (e.g. the point of 
the Kossel lattice), & indicates if the atom in the ith position is in the solid 
or liquid phase and Ci indicates the component to which the atom belongs 
(see refs. 293, 295, 303-308 and 379-384), in the stationary regime (i.e. the 
temperature in the system is constant) have the same restrictions. Here, 
elementary events as diffusion, adsorption or emission of atoms at the 
interface (which depend on temperature and on the change of system energy 
during these events) are considered. The main aim of these theories is to 
construct kinetic phase diagrams in the stationary regime of solidification. 

Other calculations are based on the Monte-Carlo method [297,300,302, 
303,385-3881, where growth of the solid phase is simulated numerically. 

Non-equilibrium thermodynamics were used in refs. 389 and 390 to study 
solidification, where the thermodynamic conditions of the solidification 
front motion and the composition of the solid phase under non-equilibrium 
conditions were derived from the energy, mass and momentum balance 
equations. Convection is also considered. In ref. 389 conditions of phase 
interface stability are formulated in diluted binary systems during growth 
under near-equilibrium conditions. In ref. 368 the influence of nonho- 
mogeneity of composition of a binary system on the growth kinetics was 
studied. An equation for chemical potential in the nonhomogeneous system 
was derived here and the growth of the solid phase under non-equilibrium 
conditions was discussed in relation to kinetic processes on the solidification 
front and to diffusion in the liquid phase. In these papers, the processes of 
growth are connected with mass and heat transport in the system, but the 
kinetic coefficients of growth are assumed to be known constants and are 
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not connected with the growth process. A knowledge of phase diagrams is 
assumed (equilibrium phase diagrams were used). 

The third case of nonstationary processes involves quite a different 
situation. Phase diagrams cannot be used because the concentrations of the 
liquid and solid phases and the undercooling at the interface all change with 
time, and depend on the properties of the material and on the course of the 
entire process. Thus, this process of solidification must be described in a 
complex manner. The transport of mass and energy in the system and the 
kinetics of phase transformation must be considered in a single model. This 
complex description of nonstationary processes was published in ref. 366, 
where the Monte-Carlo method was used to describe growth at the interface. 
At the same time, the temperature and concentration distributions in the 
binary system are simultaneously calculated. Calculations extend only as far 
as the growth of about 20 atomic layers. 

Another approach to the complex description is one in which the temper- 
ature in the system is given and the kinetics of phase transformation are 
connected with the diffusion processes in the liquid phase [369,391]. In ref. 
391 the boundary layer which modifies (with its potential) the concentration 
distribution in the vicinity of the interface is considered. The diffusion 
equation is solved using the assumption of a constant given growth rate R 
and a given temperature distribution in the system. It can be shown that the 
concentration of the solid phase C, changes with R and approaches a mean 
value of the concentration of the liquid phase if R + 00. Two regimes of the 
growth are discussed; the kinetic and the diffusion regime. 

The dependences of functions of R and Cs on C,, at the solidification 
front with the immiscibility region in binary systems are studied in ref. 369. 
The kinetics of phase transformation at the solidification front and diffusion 
in the liquid phase are given assumed values, and the temperature is 
constant in the system. The stability of stationary growth is studied in 
connection with phase diagrams, and oscillations of C, at constant R are 
observed in the vicinity of the maximum of the immiscibility curve. The 
calculations, however, do not give the finishing touches to the kinetic phase 
diagrams. 

References 270-273 and 392-400 deal with a similar complex description 
of the phase transition, where transport of heat and mass (in the diffusion 
regime only) are connected with kinetic processes at the interface in a single 
model. In this model, growth is assumed to be a stochastic process and the 
probability of a shift in the phase interface during a given time interval is 
calculated. This probability depends on the temperature distribution and on 
the kinetic processes at the phase interface. The position of the interface 
X,.(t) at time t is given by the average value 

x,(t) = /m x,J’(v,x,,~) d-q 
-CO 

(41) 
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where P( r,s,x,.,t) is the probability that at time t the interface is at X, if at 
time s it was at position r (r and s are the initial conditions of the process). 
This stochastic theory was extended to the binary systems in refs. 270-273, 
399 and 400, and the boundary conditions at the solidification front were 
determined in the form (kinetic phase diagrams) 

” = (1 - CL:;: C,FA (42) 

R = a,&[(1 - C,)FB + C,FA] (43) 
where C, is the concentration in the solid phase, C, is the concentration in 
the liquid phase, R is the solidification rate, a, is a lattice constant, v is the 
frequency of thermal vibrations of molecules at the solidification front, 

(44) 

(49 

(46) 

where T is the temperature at the solidification front, k, is Boltzmann’s 
constant, A$ the difference in chemical potential between the ith compo- 
nent in the liquid and in the solid phase and EA is the activation energy of 
transition of the molecule from the liquid to the solid phase. 

The results from stochastic theory are in good agreement with results 
published in refs. 293-296, 301, 303-308 and 379-383 in the stationary 
regime of binary system solidification. Stochastic theory has even been used 
to describe non-stationary processes, and, in contrast to the Monte-Carlo 
method, it can describe the solidification of much greater than several tens 
of atomic layers (i.e., the growth of new phase is described on a macroscopic 
scale). 

Because the structure and composition of the solid phase being formed is 
a result of the entire process of phase transformation (if this takes place far 
from thermodynamic equilibrium), it is obvious that only these complex 
models can accurately describe phase transformation. 

The stochastic theory of nucleation [171,184,400], which looks at the 
probability of formation of a critical nucleus of a given concentration under 
non-stationary conditions, describes the nucleation process as a stochastic 
process which corresponds to the maximum probability of occurrence. It 
was used to describe nucleation processes in binary systems (Cu-Ni alloy), 
and kinetic phase diagrams of the nucleation process were derived (see 
Section III). The description of the kinetics of phase transformation at the 
solidification front can be combined with the nucleation process using 
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stochastic theory [400]. This theory enables us to observe the course of a 
wide spectrum of nonstationary non-equilibrium processes. 

VI. CONCLUSIONS 

Earlier in this paper several techniques were introduced which produce 
materials in a metastable state and for which the change in temperature is 
characteristic. If we can construct the theory of these processes, we must be 
able to predict the structure and composition of the new phase on the basis 
of knowledge of the mother material and the boundary and initial condi- 
tions of the technique. The aim of these theories is to predict the technique 
and the mother material for given properties of the resulting material. Our 
theory must therefore cover all processes which are connected with phase 
transformation (see Section V). 

Summarizing the information in Section V, where the results in this field 
were discussed in detail, it is obvious that only the Monte-Carlo calculations 
and stochastic theory [273,288,366,401] describe the entire problem in suffi- 
cient detail. Many theories of phase transformation deal only with the 
equilibrium coexistence of phases. Other theories, even those that consider 
non-equilibrium conditions in the system, assume a given temperature and 
concentration in the system (which are mostly constant with respect to 
time). Theories which consider transport in the system assume equilibrium 
conditions at the phase interface or a given temperature in the system. These 
theories only partially solve the problem of finding the correct technique. On 
the other hand, they are acceptable and very successful for some techniques, 
e.g. we may consider equilibrium conditions at the solidification front 
during slow cooling. In other cases, diffusion processes in binary systems are 
decisive for evolution of the system and other effects may be neglected. 

The success of these theories is connected with the solution of concrete 
technical problems. For example, it is very important to know the stability 
regions in the growth of eutectics of lamellar structure, or to determine the 
recrystallization rates of glasses using nucleation theories. The temperature 
distribution in the system influences thermal stress in the solid phase, and 
thus influences defect distribution. Kinetic phase diagrams advise us on 
which metastable phase is forming. The distribution of defects and impuri- 
ties in crystals is connected with kinetic processes at the phase interface, etc. 

However, under the extreme conditions of solidification, when metastable 
phases form, it is evident that equilibrium conditions do not obtain at the 
solidification front and we must consider the kinetics of phase transforma- 
tion together with rapid changes in temperature and composition of the 
liquid phase. It is thus necessary to bring together both processes in a single 
theory. It is also necessary to realize that the stationary approximation is 
sufficient and that it is necessary to consider time-variable boundary condi- 
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tions. The theory should be able to describe nucleation and growth at the 
interface in a uniform way. 

We now need to know which theoretical descriptions can be used to 
formulate a theory which fulfils our requirements. Because the processes 
under study are nonequilibrium processes it is necessary to use methods of 
nonequilibrium thermodynamics, and use the evolution theorem to de- 
termine the resulting structure [402-4041. We must, however, be aware that 
this theorem only holds if the boundary conditions are constant with respect 
to time, that its use is advantageous only in the case of stationary processes 
(e.g. the formation of dissipative structures) and not where variable boundary 
conditions are involved, and that the kinetic coefficients at the interface 
must be obtained experimentally [389,390]. 

For reasons which were discussed in Section IV, the following methods 
are unsuitable since the kinetics of phase transformation are not considered: 
Monte-Carlo calculations, the methods of molecular dynamics (here we may 
calculate only the growth of a few atomic layers), the method of density 
functions, the renormalization group method or field methods using the 
Landau-Ginzburg approximation. Neither can solution of Stefan’s problem 
(where phase diagrams must be known) be used. These theories must be 
generalized so that they fulfil our requirements. 

Further, I would like to emphasize that it is possible to use statistical 
methods to describe processes mentioned above relating to the advantages of 
molecular processes in phase transformation and to the existence and 
influence of fluctuations in thermodynamic values near the phase transfor- 
mation point. The most general description would be solution of the 
Liouville equation for the density matrix operator (or solution of the 
generalized master equation [405]) using quantum mechanics and the re- 
servoir density matrix in which temperature is a function of time [406,407]. 
With this theory we would be able to describe even non-Markovian processes. 
This method was, however, not used for the processes under study owing to 
the difficulty of the above-mentioned problems of considering many effects 
in the framework of a single model. 

The new method, which uses a mathematical method of the stochastic 
processes and which fulfils our requirements, seems useful. This theory 
enables us to describe the processes of nucleation and growth at the 
interface in terms of a single model. 

From the above-mentioned theoretical and experimental results it follows 
that study of phase transformation kinetics under nonequilibrium conditions 
is a rapidly developing branch of materials research, which is studied by 
physicists and technologists. Merely the attempt to obtain new materials, 
more perfect materials or pure materials with new properties leads us to a 
better determination and description of processes and to a better under- 
standing of the course of phase transformation. The imperfection in the 
present state of the art lies in the nonsystematic experimental study of 
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processes which are far from equilibrium or under time-dependent boundary 
conditions. 

Development of theory is also in its initial stages. In spite of partial 
successes (kinetic phase diagrams, the problems of interface stability, etc.) 
calculations of convection are complicated, and (for example) the question 
of the influence of external fields on phase transformation and the de- 
termination of surface energy and kinetic coefficients are not solved. Nev- 
ertheless, development in this field is taking place and closer contact 
between theory and experiment is necessary for solution of the problems 
outlined in this review. It is necessary to devote attention to the characteri- 
zation of materials, to the study of phase transformation processes, and to 
the study of temperature fields which determine the entire process. This is 
necessarily connected with the development of thermal analysis. 

PRINCIPAL SYMBOLS 
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surface of an n-atom cluster of new phase 
parameters of the Hamiltonian of the system in renormalization 
group theory 
lattice constant 
stationary points of renormalization group 
single-particle direct correlation function 
concentration of one component in binary system in liquid 
phase 
concentration in liquid phase at the solidification front 
number of atoms passing per unit time from the parent to the 
newly forming phase 
concentration of one component in binary system 
concentration of one component in binary system in solid phase 
concentration in solid phase at the solidification front 
kinetic coefficient in the Landau-Ginzburg equation 
diffusion coefficient in liquid phase 
activation energy of transition of a molecule from liquid to solid 
phase 
electromotive force 
number of atoms passing per unit time from the newly forming 
to parent phase 
Faraday constant 
free energy of system 
distribution function of clusters of n atoms at time t 

equilibrium distribution function of clusters 
ratio of the number of nearest neighbors in the plane of crystal 
parallel to the interface and the bulk coordination number 



406 

+ 

5 
3F 
h 

I(t) 
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Gibbs energy 
concentration gradient at interface in liquid phase 
temperature gradient at interface in solid or liquid phase 
distribution function of atoms of given component c, and phase 
5, at position i and time t 

external forces acting on the unit mass of the jth component 
enthalpy of the system 
Hamiltonian of the system 
Planck constant 
nucleation rate 
flux of ion of components A and B 
stationary nucleation rate 
rate of n-atom cluster formation 
diffusion flwc. of jth component 
Boltzmann constant 
heat conductivity coefficient in liquid and solid phase, respec- 
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apparatus constant in DTA method 
change of internal energy during phase transformation per atom 
charge 
derivation of the equilibrium solidification temperature as a 
function of concentration in melt 
number of atoms in system 
number of atoms in cluster 
total flux of jth component 
critical number of atoms in nucleus 

P(r,~,x, t) probability that the solidification front is in position x at time t; 
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s 
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r and s are the initial conditions 
partial pressures of components A and B 
probability of n-atom cluster formation 
source of energy 
source of concentration 
source of heat 
diffusion flux of heat 
growth rate at solidification front 
radius vector 
entropy 
temperature 
equilibrium melting temperature 
reference temperature 
trace of matrix A 
temperature of sample 
point in T-T-T diagram corresponding to the minimum time 
for formation of the volume fraction X, of the new phase 
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X 
XF$) 
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z 

minimum cooling rate for glass formation 
time 
perturbation of the planar interface 
internal energy per unit mass 
volume of the crystalline phase 
volume of the parent phase 
volume at time t of the growing crystalline nucleus forming at 
time t’ 

average convection velocity 
mean velocity of atoms 
volume fraction of the crystalline phase 
atomic fraction of components A and B 
position of solidification front at time t 

the maximum value of volume fraction of the crystalline phase 
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partition function 
Zeldovich factor 

Greek letters 
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apparent degree of crystallization 
Jackson factor 
critical value of aJ 
surface shape factor 
change in Gibbs energy 
change in excess Gibbs energy 
work needed for formation of an n-atom cluster at temperature 
T 
AG,t( T) during heterogeneous nucleation 

= Cs, - CLr 
change in enthalpy 
change in entropy 
undercooling 
difference in chemical potentials of the liquid and solid phases 
of the ith component during phase transition 
order parameter 
wetting angle 
chemical potential 
chemical potential of i th component in liquid or solid phase 
frequency of thermal vibrations of molecules 
kinetic coefficient of phase transformation 
pressure tensor 
total density 
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surface density of atoms 
specific surface energy density 
bonding energy of atoms 
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